Comparison of Optical Emission Spectroscopy and Cavity Ring Down Spectroscopy in Large-Scaled Negative Ion Source

K. Ikeda, H. Nakano, K. Tsumori, U. Fantza, O. Kaneko, M. Kisakib, K. Nagaoka, M. Osakabe and Y. Takeiri

National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan
aMax-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, D-85748 Garching, Germany
bTohoku University, Aoba, Sendai 980-8579, Japan

Production of H- ions and its dynamics near the surface of the plasma grid (PG) are important subjects in cesium (Cs) assisted H- ion sources for stable operations of the neutral beam injectors (NBI). An optical emission spectroscopy (OES) and a cavity-ring-down spectroscopy (CRDS) systems have been installed in the 1/3-scaled NIFS H- source to investigate H- and Cs behaviors. The plasmas are produced by filament-arc discharge, and magnetic filters are equipped in the H- source to reduce electron energies near the PG. A bias insulator has been replaced the thickness from 16 mm to 40 mm to install quartz windows for OES, optical mirrors for CRDS, and Langmuir-probe ports. All the diagnostic positions are 10 mm apart from the PG and parallel to its plane.

In the OES measurements, atomic hydrogen lines (H\textalpha{}, H\textbeta{}, H\gamma{}), oxygen lines (O I 777 nm), and Cs0 lines (Cs I 852 nm) have been observed. Although Cs+ lines (Cs II 460 nm) are strongly observed in the driver region in the previous experiment [1], the intensity of the lines are below the measurable limit in the extraction region. The electron temperature measured by the Langmuir-probe is at most 1 eV. According to the numerical calculation of the emission rate coefficient of hydrogen Balmer lines, an emission line ratio H\textalpha{}/H\beta{} relates to H- density in a negative ion source [2]. The H- density can be estimated in the condition of $T_e > 1$ eV. At the present plasma parameters near the PG, it is difficult to obtain H- density from the ratios of Balmer-line intensities using only OES analysis, because dissociative recombination of molecular hydrogen ions contributes significantly to the Balmer line radiation. So the correlation approach is employed in OES measurement for H- estimation.

We set the constant discharge conditions (arc power, bias voltage and pressure) in the Cs experiment. Just after Cs seeding, H- beam current immediately jumps up. Then the signal intensity of neutral Cs and H- beam current increase shot by shot. We have also observed increasing of H\textalpha{}/H\beta{} ratio by OES and H- density by CRDS near the PG due to enhancement of H- production. The linear correlation between the inclination of H\textalpha{}/H\beta{} and the H- density allows for benchmarking the OES measurement with the CRDS experimentally, which is then being used for estimation of H- density by OES in these ion sources.