Internal Transport Barriers in the DIII-D Tokamak

by

E.J. Doyle

Dept. of Electrical Engineering and PSTI, University of California, Los Angeles, California

For the DIII-D Research Team

Presented at the 12th International Toki Conference and 3rd General Scientific Assembly of the Asia Plasma Fusion Association, Toki, Japan

December 11–14, 2001
MOTIVATION — IMPORTANCE OF ITB RESEARCH

- Obtaining ITBs with large radius and barrier width leads to:
 - Higher fusion performance
 - Improved MHD stability limits
 - Improved bootstrap current alignment

Schematic ITB \(T_i \) profiles

MHD modeling of \(\beta_N \) limit

ARIES-AT Modeling

- Assisted in obtaining significant fusion gain (\(Q \sim 10 \)) in Next Step burning plasmas
- More compact and/or economic powerplants
- Assist in achieving steady-state tokamak operation

ITB Radius, \(\rho_{ITB} \)

- Optimal ITB profile
- Non-optimal ITB profile

ITB half width

\(\beta_N \) (%-m-T/MA)

- Stable
- Unstable

\(T_i \) (keV)

- Desired current profile

\(r/a \)

- ITB
OVERVIEW

• Significant progress on DIII-D in addressing critical issues for ITB research:

 — Improved understanding of physical mechanisms responsible for ITB formation
 ★ Evidence for a range of turbulence/transport reduction mechanisms

 — New Quiescent Double Barrier (QDB) regime provides sustained, high quality ITB operation with an ELM-free H-mode edge, allowing us to examine:
 ★ Edge-core integration issues, e.g. effect of ELMs
 ★ ITB sustainment
 ★ Impurity accumulation

 — MHD stability will determine ultimate performance limit of ITB plasmas
 ★ Stabilization of resistive wall modes (RWM) and neoclassical tearing modes (NTM) demonstrated on DIII-D. Invited talk by M. Okabayashi, Wednesday
UNDERSTANDING OF ITB FORMATION CONDITIONS FLOWS
FROM UNDERSTANDING OF TRANSPORT DRIVE AND SUPPRESSION MECHANISMS

<table>
<thead>
<tr>
<th>Indicative turbulence scales</th>
<th>0.1</th>
<th>$k_\theta \rho_s$</th>
<th>$1.$</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$1.$</td>
<td>$k_\theta (cm^{-1})$</td>
<td>10</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Turbulence/transport mechanisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITG</td>
</tr>
<tr>
<td>TEM</td>
</tr>
<tr>
<td>ETG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Affected transport channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion thermal</td>
</tr>
<tr>
<td>Momentum</td>
</tr>
<tr>
<td>Electron particle</td>
</tr>
<tr>
<td>Electron thermal</td>
</tr>
<tr>
<td>ExB shear</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stabilization mechanisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reversed magnetic shear (NCS)</td>
</tr>
<tr>
<td>α-stabilization (Shafranov shift)</td>
</tr>
<tr>
<td>Impurity injection</td>
</tr>
</tbody>
</table>

- Theory-based modeling predictions for turbulence and transport drive and control mechanisms are compared to experiment
- DIII-D results indicate following turbulence control mechanisms can be effective:
 - α-stabilization/Shafranov shift
 - q profile
 - Growth rate reduction via impurity injection
 - Sheared ExB flows (rotation)
- Direct evidence for ETG modes is lacking
\(\alpha\)-STABILIZATION AND NEGATIVE MAGNETIC SHEAR ARE PREDICTED TO REDUCE TURBULENCE GROWTH RATES

- Theory calculations, e.g. Waltz et al, Phys Plasmas 1997, indicate that turbulence growth rates can be reduced by negative magnetic shear and \(\alpha\)-stabilization (Shafranov shift)
 - Where \(\alpha\) is the normalized pressure gradient (ballooning parameter)

- In comparisons to theory, extensive use is made of the GLF23 transport model
 - Drift-wave based model (ITG, TEM, ETG), providing quasilinear estimates of transport
 - Includes ExB shear, \(\alpha\)-stabilization, magnetic shear and dilution effects

- ExB shear predicted to suppress turbulence when the shearing rate \(\omega_{\text{ExB}}\) exceeds the turbulence linear growth rate \(\gamma\)
EVIDENCE FOR ROLE OF α-STABILIZATION PROVIDED BY ELECTRON THERMAL ITBs OBTAINED WITH LOCALIZED ECH

- E-ITB develops rapidly following ECH onset
- Electron transport reduced
SIMULATIONS INDICATE α-STABILIZATION IS CRITICAL IN FORMATION OF ELECTRON ITB

- Dynamical simulations using GLF23 model maintain E-ITB only if α is sufficiently large
 - GLF23 also reproduces dynamics of barrier evolution

- Results also provide indirect evidence for ETG modes:
 - T_e gradient at location of E-ITBs consistently observed to be at marginal stability to ETG mode

![Graph showing experimental and simulated T_e profiles with $\alpha=0$ comparison.](image-url)

![Graph showing calculated ETG critical gradient.](image-url)
SUBSTANTIAL EVIDENCE FROM MANY EXPERIMENTS FOR ROLE OF q-PROFILE IN FACILITATING ITB FORMATION

- On DIII-D, use of strong negative shear, plus high heating power results in ITBs in all four transport channels.

- Without strong negative shear, ITBs on DIII-D often limited to ion thermal and angular momentum channels.

Graphs:

- **Ion Temperature**
 - T_i (keV)
 - Steep gradient zone
 - 1.2 s, 1.4 s, 1.5 s

- **Electron Density**
 - n_e ($\times 10^{19} \text{ m}^{-3}$)

- **Carbon Rotation**
 - Toroidal rotation (kHz)
 - Inset: q-profile

- **Electron Temperature**
 - T_e (keV)

DIII-D

NATIONAL FUSION FACILITY
SAN DIEGO
IMPURITY DILUTION CAN REDUCE TURBULENT TRANSPORT BY REDUCING GROWTH RATES AND INCREASING ExB SHEAR

- Results from neon injection into co-NBI plasma with L-mode edge, no prior ITB
- Results explain physics of RI-mode:
 - Linear growth rates reduced and ExB shearing rate increased
 - Density fluctuations dramatically reduced
 - Core temperatures rise, energy confinement and neutron rate double, profiles broaden

![Graphs showing growth rates and shearing rates](attachment:image.png)

- Turbulence growth and shearing rates
- BES spectra of \tilde{n}/n at $\rho=0.7, 1.1-1.2$ s

EJD Toki 2001 12/14/2001 9
ExB SHEAR FLOW IS MOST STUDIED TRANSPORT BARRIER FORMATION MECHANISM (EDGE AND CORE)

- Self-consistent dynamical modeling using GLF23 can explain details of step-wise formation of ITBs on DIII-D
 - Steps are generated by a competition between the ∇P and $v_\phi B_\theta$ contributions to E_r and the ExB shearing rate in co-NBI discharges

$$E_r = \frac{\nabla P_i}{en_i Z_i} - v_\theta B_\phi + v_\phi B_\theta$$

- Occurrence of steps sometimes correlates with presence of rational q values
INTERPLAY OF TERMS IN ExB SHEARING RATE

ω_{ExB} IS DIFFERENT FOR CO- AND COUNTER-NBI

- Main ion shearing rate ω_{ExB} can be separated into pressure and rotation terms

$$\omega_{ExB} = \omega_{ExB}^{\nabla p} + \omega_{ExB}^{\text{rotation}}$$

- With counter-NBI, increasing the pressure gradient component increases ω_{ExB}, rather than reducing it, as with co-injection
 - Counter-NBI favorable for ITB expansion with L-mode edge
 - Counter-NBI experiments led to discovery of Quiescent Double Barrier (QDB) regime
QUIESCENT DOUBLE-BARRIER (QDB) OPERATION

Will examine:

- Performance obtained in QDB regime
- Significance of QDB results
- Transport and fluctuation analysis and modeling
- Impurity issues

Some new acronyms:

- QH-mode: Quiescent H-mode
 - An ELM-free H-mode with density and radiated power control
- QDB: Quiescent Double Barrier
 - Operation with an internal transport barrier (ITB) inside a QH-mode edge
QDB REGIME OBTAINED USING COUNTER-NBI —
COMBINES ITBs WITH ELM-FREE QUIESCENT H-MODE EDGE

- Edge pedestal elevates central temperatures, improving fusion performance
COMBINATION OF CORE ITB AND QH-MODE EDGE RESULTS IN SUSTAINED HIGH PERFORMANCE PLASMAS

- $\beta_n H_{89} = 7$ for $10 \tau_E$ (1.6 s)
- Duration limited by NBI sources
- Have maintained QH-mode for >3.5 s, $\sim 25 \tau_E$
- Feature of QH-mode is ELM-free operation with density and radiated power control
 - Density controlled using divertor pumping

Graphs

- Plasma Current (MA) vs Time (s)
- Central Density (10^{19} m$^{-3}$) vs Time (s)
- NBI Power (MW) vs Time (s)
- Radiated Power (MW) vs Time (s)
- Line Average Density (10^{19} m$^{-3}$) vs Time (s)
- $\beta_n H_{89}$ vs Time (s)
- Neutron rate (10^{15} s$^{-1}$) vs Time (s)

Data

- Duration limited by NBI sources
- Feature of QH-mode is ELM-free operation with density and radiated power control
- Density controlled using divertor pumping
WHAT IS THE SIGNIFICANCE OF QDB OPERATION?

- H-mode is the operating regime of choice for next-step devices, but has non-optimal features due to the impact of Edge Localized Modes (ELMs)
 - Pulsed heat loads to the divertor can cause rapid erosion
 - Type I (Giant) ELMs can inhibit or destroy the ITBs desired for advanced tokamak (AT) scenarios

 ★ Double barriers have been achieved on JT-60U and JET

- QDB plasmas address critical next-step and ITB issues:
 - Provides high quality ELM-free H-mode, eliminating pulsed divertor heat loads
 - The QH-mode edge is compatible with ITBs
 - Sustained long pulse, high performance capability:

 ★ >3.5 s or 25 τ_E achieved, limited only by beam pulse duration

 ★ $\beta_N H_{89} = 7$ for 10 τ_E
 - Long pulse capability provides opportunity to study impurity accumulation issues in detail
Transport analysis confirms presence of double (core and edge) transport barriers.

- Core transport is similar to that in ITB plasmas with an L-mode edge.
 - ITB refers to region of reduced transport relative to L-mode.
- Edge transport is typical of H-mode.
- Core and edge barriers are kept separate by region of low ExB shear.

\[\chi_i \text{ ITB} \]
\[\chi^\text{neo} \]
\[\chi_e \text{ ITB} \]
\[\text{QDB} \text{ ITB + L-mode} \]
\[\text{L-mode} \]

\[\text{QDB} \text{ ITB} \]
\[\text{L-mode} + \text{ITB} \text{ 998491.12s} \]
\[\text{L-mode} \text{ 998520.80s} \]
SIMULATIONS USING THE GLF23 MODEL REPRODUCE THE QDB CORE ION BARRIER

- Steady-state simulation reproduces core ion temperature barrier
 - Core T_e profile not accurately reproduced
- GLF23 also predicts core turbulence should not be completely suppressed, as E_xB shearing rate and turbulence growth rate in approximate balance.
CORE BARRIER EXISTS WITHOUT COMPLETE TURBULENCE SUPPRESSION, IN AGREEMENT WITH GLF23 MODELING

- Internal broadband turbulence is not completely suppressed as the QDB core barrier evolves
 - Residual turbulence still significantly above the FIR scattering system detection limit
 - Contrasts with typical ITB in DIII–D, where core turbulence is suppressed to the noise floor

- High frequency coherent core modes are often detected.
 - Reflectometer data indicate these modes are localized to $\rho \sim 0-0.4$.
STEP SIZE FOR CORE TURBULENT TRANSPORT IS REDUCED IN QDB PLASMAS

- In L-mode, correlation lengths are observed to scale approximately as $5 \sim 10 \rho_s$
- In QDB plasmas, core correlation lengths are significantly lower than the scaling observed in L-mode
- Initial modeling using the UCAN global gyrokinetic code tracks core experimental trends and magnitude

- Where ρ_s is the ion gyroradius evaluated using T_e

L-mode data set

- Correlation length, Δr
- $5-10 \rho_s$

QDB data set

- Correlation length, Δr
- $5-10 \rho_s$

Simulations

- Correlation length, Δr
- $5-10 \rho_s$
QDB DISCHARGES ALLOW US TO STUDY IMPURITY ACCUMULATION IN DIII-D ITB PLASMAS

- Nickel content increases with time, but contribution to radiated power is low, < 0.3 MW. Large impact on Z_{eff}
- Low-Z impurities, e.g. carbon, stay approximately constant
NEOCASSICAL MODELING PREDICTS CENTRAL PEAKING OF HIGH-Z IMPURITIES, DUE TO PEAKED n_e PROFILE

- Measured impurity convection and diffusivity is larger than neoclassical from $0.1 < \rho < 0.5$

- Measured neon profile is less peaked than profile calculated using neoclassical transport
CONTROL TOOLS EXIST TO MODIFY
DENSITY PROFILE AND REDUCE DENSITY PEAKING

- Example of use of central ECH to modify density profile
- $n_e(0)/n_{AVE}$ decreases from 2.6 to 1.7
- MIST modeling indicates Ni concentration is reduced
- Reduced density peaking would also improve bootstrap current alignment
CONCLUSIONS

- DIII-D results have improved our understanding of ITB formation conditions
 - Evidence for the effect of α-stabilization/Shafrranov shift, magnetic shear, impurity injection, and sheared ExB flows

- QDB results demonstrate that it is possible to have long pulse, high performance ITB operation with an ELM-free H-mode edge, with density and radiated power control
 - >3.5 s or $25 \tau_E$ achieved, limited only by beam pulse duration
 - $\beta_{NH89} = 7$ for $10 \tau_E$
 - Pulsed divertor heat loads eliminated
 - Core and edge transport barriers are compatible
 - Turbulence and transport behavior of QDB discharges is reproduced by initial simulations and modeling
 - Issues are increasing the operating density, impurity accumulation and obtaining QDB with balanced or co-NBI (JT-60U has unique capability!)