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Motivation

- Stellarators will need divertors for plasma exhaust.

- Solutions have to be compatible with stellarator con-
figurations.

- Utilize flux diversion by magnetic islands at the edge
----> |sland divertor

- W7-X: study of the reactor potential of this concept.

- W7-AS can be operated with similar edge structure,
divertor studies can provide preparatory information.

Major studies have been started in March 2001




Divertor geometry in 7-AS: boundary islands

R=2m,a<0.16 m,B <25T, non-planar coils, five field periods

- can be operated with large magnetic islands at the edge
- rad. position can be varied by adjusting the rot. transform
- rad. width can be varied by special control coils

< one of five magnetic field periods >




Divertor geometry in W7-AS
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Major aims of the programme

To answer the questions: First experiments —

- Effects of the new divertors on the plasma performance?

- Cold divertor plasmas without too strong cooling of the
core ?

- Controlled? Compatible with active particle pumping?

- Compatible with improved confinement scenarios
(e.g. ELMy H-mode)?

Data shall be used to validate the EMC3-EIRENE code.




Summary of main results

Access to a new regime with NBI at very high density
(up to n, = 3.5x 10%° m=3) with improved confinement:

- T steeply increases with density,

- T, and T, decrease with increasing density
(Timp = Tg at highest density)

—» Density control already without Ti-gettering,

—» quasi-steady state operation also including partial
detachment,

— radiatiation always peaked at the edge.

Record value of <3> = 3.1% achieved (atB=1.25T)

Plasma heating by HF (EBW 140 GHz) successfully
demonstrated.




Plasma performance at high density: trans. to stationarity
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Plasma performance at high density: access to stationarity
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Plasma performance at high density: improved confinement

: g 0,6
20 g f
: _ " otial 05 - IC: steep increase
I o detachment 1 ('jump') of TE’
16 i ® ‘ -0.4
0 , gV e ‘ .+ -lowto moderate 1.
gm ol ,, ° o, -03 5  degradation at
= : : partial detachment
ﬁ NBI, 1 MW 0.2
81 NBI, 2 MW - steep drop of T,
I ::. ;01
4. |
| | | I ol il 10
1 2 3 4




Plasma performance at high density: improved confinement

H W7-95=15 -
H1SS95=2 -
H NLHD2=2 -

H NLHD1=2.8 -

Ne /1020 m-3




Plasma performance at high density: plasma radiation

- radiated power fraction low to
moderate in attached regimes,

- up to 90% at detachment
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Plasma performance at high density: core parameters

T eV

T., n, profiles for NC, IC
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Plasma performance at high density: H-mode?
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Plasma performance at high density: edge parameters

NC ---> IC---> detachment: - edge temperatures T, and,

- edge density n g increases hence, upstream pressures

steeply drop already prior to detachment
- drops at detachment
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Divertor plasma regimes

The plasma-target interaction
concentrates mainly at helical stripes

Ha traces

Region D:

rollover and detachment
of energy and particle flux
at high density

Region A:
attached spots even at
highest density




Divertor plasma regimes: downstream parameters

Peak densities and temperatures
from probe array
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Divertor regimes: downstream parameters

Peak densities and temperatures
from probe array

- Downstream peak T4
stays above 20 eV

---> attached spot

- Inconsistent with low T
---> inhomogeneous T.?




Divertor regimes: stable partial detachment

Example for stable partial detachment
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Divertor regimes: controlled transition to part. detachment

Controlled transition to ,stronger* partial
detachment - radiated power fraction = 85%
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Divertor regimes: reduction of thermal load
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Divertor regimes:. asymmetries

Neutral pressures inside divertor
subvolume show strong up/down
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Operational ranges and density limit

Ne /1020 m-3

\ separation Ay between x-point and target /cm
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radiative collapse

normal confinéj:'ment
uhstationary,

12.5 13.0 13.5
plasma minor radius /cm
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\/ \Variation of a;; and A, by
4 control coil currents

NBI, 2 MW:

- Access to IC independent
of A,

- partial detachment at
A, =22.4cm

- partial detachment extends
accessible density range

— density limit SUDO et al.

14.5




Operational ranges and density limit
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Summary

- Access to a new NBI, high-density regime (up to n_, = 3.5x 1020 m-3)
with high 1 and low 1, and T1;,,,

- Full density control already without Ti-gettering,
- Quasi-steady state operation also including partial detachment,

- Edge-dominated radiation, radiated power fractions are low to
moderate in attached and high (up to 90%) in detached regimes

- Detachment is partial: it does not extend over the full target area,
and the particle and energy fluxes stay finite (T4 > 2 eV)

- Improved confinement in all separatrix-bounded configurations,

- Stable part. detachment restricts to configurations with larger
distance between x-points and targets (divertor configurations).




