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Outline
� Fast transient phenomena in JET-

experimental observations;
� Concept of turbulence non-locality;
� Profile stiffness as an alternative

approach to fast transient phenomena;
� Conclusions
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I.  Fast Transient Phenomena on
JET- Experimental Observations

� An unusually fast heat pulse, generated
by L-H transition, has been first reported
in 1993 (S. Neudachin et al., 20th EPS
Conference, Lisbon, 1993)
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� Two unusual features of this heat pulse:

I. A very fast (sometimes beyond

experimental resolution) propagation of the

temperature rise;

II. Heat pulse amplitude does not decay

(sometimes even rise) in the core

quickly attracted attention of theoreticians

and modellers.

� Since then JET and many other

tokamaks have reported a number of

heat and cold pulses with the similar

features;

� Some tokamaks (starting from TEXT, K.

Gentle,1993) reported cold pulses which

change polarity in the core;
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Cold pulse triggered by a shallow
pellet injection
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Cold pulse triggered by type-I
ELM
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Cold pulse caused by noble gas
puffing into ELM-free H-mode
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Cold pulse in plasma with ITB
A very recent example shows that cold
pulse leads to erosion of the ITB
(P.Mantica, EPS 2001)

Weak ITB can be
completely destroyed
by the cold pulse
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� Two unusual features of these heat

pulses:

I. A very fast (sometimes beyond

experimental resolution) propagation of

the onset of the temperature rise;

II. Heat pulse amplitude does not

decay (sometimes even rise) in the core

quickly attracted attention of

theoreticians and modellers.
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Let us compare experimental results
with the prediction from a simple
diffusive model with the constant χ :
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� The difference in the speed of cold
pulse propagation and in the radial
profile of the cold pulse amplitude is
obvious.

� How can we explain such a fast, non-
diffusive kind of cold pulse propagation?

� Two possible explanations are being
considered by theoreticians at present:

� Non-local turbulence paradigm
(streamers),
� Stiff local transport paradigm

(avalanches).

Non-local turbulence.
� Non-local turbulence as a mean of a

fast L-H transition in JET has been
proposed in (J.G. Cordey et al., NF
1995) and implemented in an empirical
JETTO transport model (M. Erba et al.,
PPCF, 1997);

� Since then the model has been
successfully applied to a number of
transient phenomena.
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� The physics mechanism of the
turbulence non-locality originates from:

� Toroidal coupling of unstable vortices,
� Inverse non-linear cascade of unstable

modes into long wave length part of the
wave spectrum;

� Both mechanisms lead to a formation of
long radially correlated structures
(strimmers), which can explain fast non-
local change in transport coefficients
during transient phenomena (F.
Romanelli, F. Zonca, PF, 1993; V. Parail
et al., NF 1997; Y. Kishimoto et. al.,
IAEA, 1998; K. Itoh, S.-I. Itoh, 2001);

� JET transport model assumes that the
source of the turbulence localised near
the separatrix, so that

sepe

e
isBohm T

T
qcC

∇⋅⋅⋅≈ 2ρχ

� Next slide shows an example of L-H
transition simulation with JET model;
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Profile stiffness.
� Profile stiffness is a known concept,

based on theoretical finding that both
electron and ion anomalous transport
increases rapidly when some plasma

parameters (
i

i

T

T∇
in case of ITG) exceed

certain limit (F. Romanelli, F. Zonca, PF
1993; A. Dimits et. Al., PP 2000);

� Generally, transport coefficient with a
profile stiffness has the following form:
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transport changes rapidly in the region
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The figure allows concluding:

� Temperature profile keeps the same
shape in case when heating power
exceeds critical level;

� Core temperature depends on the
edge temperature rather than on the
level of transport;

� Cold pulse can propagate rapidly (like
avalanche) with the characteristic χ
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� Profile stiffness is a recognised
concept, which has been found in
practically every tokamak;
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� The question is whether this concept
can explain all experimentally observed
fast transient phenomena, or we still
need a non-local transport on the top;
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 Profile stiffness vs. non-locality
� Before going to a detailed comparison

of two concepts, let us look at some
recent result of cold pulse modelling
which uses stiff transport models

(J. Kinsey, 2000-01)

� Three theory based transport models
(MMM-95, IFS/PPPL and GLF-23) have
been used to simulate the same recent
cold pulse from JET;
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Now we can try to answer the question:
“Can we explain all fast transient
phenomena by a stiff local transport or
we still need a non-local transport?”

� Stiff models should have a problem
reproducing L-H transition (the
perturbation should actually reduce
transport rather than increase it);

� It will be difficult to reproduce
experimentally observed asymmetry in
propagation of the cold pulse, triggered
at the edge and in the core;
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� Very fast cold pulse propagation
requires extremely high level of stiffness,
which has only a limited support from the
theory;

Conclusions

� Fast transient phenomena found on
JET and other tokamaks make a big
impact on a theory of plasma turbulence.

� It led to a development of a non-local
approach to plasma turbulence
(streamers) as well as to a development
of stiff local transport models
(avalanches);

� A single theoretical model able to
reproduce all experimentally observed
phenomena (both steady state and
transient) has yet to be found;

� Most probably such a model will be a
combination of stiff transport with
elements of non-locality in it.
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