Magnetized Target Fusion: Prospects for low-cost fusion energy

Richard E. Siemona,

Peter J. Turchia, Daniel C. Barnesa, James H. Degnanb,
Paul Parksc, Dmitri D. Ryutovd, Francis Y. Thioe

a) Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
b) Air Force Research Laboratory, Kirtland AFB, NM 87117-5776, USA
c) General Atomics, San Diego, CA, 92121-1194, USA
d) Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
e) NASA Marshall Space Flight Center, Huntsville, AL 35812, USA

ITC-12
Dec 12, 2001
Toki, Japan
Fusion physics: $10^7 - 10^8 \, ^\circ C$
Maximum pressure depends upon technology

• Superconducting magnets (steady state)
 \[B < 15 \text{ Tesla} \]
 \[p < \beta B^2 \sim 100 \text{ atmospheres} \]

• Liner technology (pulsed)
 \[B \sim 200 \text{ Tesla} \]
 \[p \sim \beta B^2 \sim 10^6 \text{ atmospheres} \]

• Laser compression (pulsed)
 \[p \sim 10^{11} \text{ atmospheres} \]
Liner technology

\[B_\theta \sim 100 \text{ tesla (40,000 atmospheres)} \]

"Liner" is thin-walled aluminum cylinder
Radiograph of liner implosion

Initial 1-mm thick Aluminum liner

Flash xrays

Stationary 6-mm probe jacket

Elastic-plastic deformed 7-mm thick liner at 12:1 radial compression

Side-on view of liner moving 4 mm/µs
How might MTF be done?

Magnetized Target Fusion

- Pulsed current \(\sim 10^7 \text{ A} \)
- Thin metal wall implodes
- 0.5 m

Plasma Injector

Liner Implosion System
MTF requires energy to preheat the target and separately to implode the liner.

- Target formation and preheating: \(\sim 0.1-1.0 \text{ MJ}\)
- Liner implosion: \(\sim 10-100 \text{ MJ}\)
Los Alamos FRX-L experiment

100-kV, 200-kJ Capacitor bank
Current collector plate
Theta-pinch coil 36-cm long; 12-cm diameter
Predict $n \sim 10^{17} \text{ cm}^{-3}$ $T \sim 300 \text{ eV}$
Shiva Star liner implosion \((Q_{\text{eff}} \sim .01) \)

80 kV, 5 MJ
The Field Reversed Configuration
End-on FRC interferogram

R. Siemon et al.,
Fusion Tech. 9, 13 (1986)

M. Tuszewski,
with 416 references.
Time history of interferograms
Equilibrium theory up to $E \sim 5$

\[\langle \beta \rangle = 1 - x_s^2 / 2 \]

\[x_s = r_s / R_{\text{wall}} \]

\[E = L / 2r_s \]
Stability appears to depend upon elongation

\[S^* = \frac{r_s}{(c/\omega_{pi})} \sim \frac{r_s}{\rho_i} \quad E = \frac{L_s}{2r_s} \]
Profile of long FRC determined by equilibrium alone

D.C. Barnes, Phys. Plasmas 8, 4864 (2001)

Combining $p = p(\psi)$ with uniform elongation ($\partial/\partial z \ll \partial/\partial r$) gives solution

$$p = p_0[\psi; p_{op}] + \varepsilon^2 p_1[\psi; r_s(\hat{z})]$$

Depends on: open p; elongation; shape

Universal closed pressure

25:1 2D solution
Stability with Hall terms agrees with empirical good parameter regime*

Empirical analysis (Tuszewski) shows \(S^*/E < 3.5 \) for good plasma flux confinement.

Theory shows \(S^*/E < 2 - 4 \) for stability

\[S^* = \frac{r_s}{(c/\omega_{pi})} \]
\[E = \frac{l_s}{d_s} \]

*D. C. Barnes, Phys. Plasmas, accepted Nov. 2001
Los Alamos FRX-L team

Goal: Compress an FRC inside a liner to achieve $T \sim 10$ keV
Los Alamos Atlas facility ($Q_{\text{eff}} \sim 1$)

240 KV
25 MJ
Summary of introductory points

• The field-reversed configuration provides one method to position 300-eV plasma inside a conducting cylinder.

• Recent theoretical work suggests that the long-standing paradox of FRC stability might now be resolved.

• Liner implosions with 10:1 radial compression are feasible:
 \[B \sim 50 \text{ kG} \rightarrow \sim 5 \times 10^6 \text{ G} \]
 \[P \sim 100 \text{ bar} \rightarrow \sim 10^6 \text{ bar} \quad (1 \text{ bar} = 1 \text{ atmosphere}) \]

• One should ask: Why is this important to fusion research?
\[\alpha = \frac{dR}{R} \]

10 keV plasma mixed with magnetic field

Pusher material with density \(\rho \)

High pressure cavity

\[B \quad nT \]

\[r \]
Lawson triple product requirement

\[\frac{1}{2} n^2 \langle \sigma v \rangle E_f \geq 3nT/\tau_E ; \rho = n m_i \]

\[nT\tau_E \geq 6T^2/\langle \sigma v \rangle E_f \]

Temperature and fusion cross section \(\sigma \) determine required product of pressure and energy confinement time
System size tends to decrease as pressure increases

Suppose τ_E is determined by thermal diffusivity; then size must be large enough to meet Lawson condition:

$$\tau_E = a^2/\chi$$

Define an engineering $\beta = nT / P$

$$a = \sqrt{\tau_E \chi} = \sqrt{nT \tau_E \chi / \beta} / \sqrt{P}$$
Variation of size with pressure depends upon specific loss processes.

- **NIF**
 - Diffusion-limit
 - Zero magnetic field
- **Approximate Upper-limit “Bohm”**
- **Iter**
- **Advanced concepts**
- **MTF**
 - Diffusion-limit
 - “classical” magnetic confinement

Graph showing the relationship between Fuel Mass (grams), Fuel Energy (joules), and Pressure (atm.).
Dwell time

Pressure \((P) \) lasts for a pulse time \(\tau \) limited by inertia of liner (density \(\rho \)).

\[
\tau = \frac{dR}{(P/\rho)^{1/2}}
\]

Pulse duration \(\tau \) must separately satisfy the Lawson condition.
Liner kinetic energy and power

Can show:

\[E = E_{\text{plasma}} + E_{\text{field}} = (1+\beta x^2/2) PV \]

Kinetic Energy is related to \(E \) by an efficiency \(\varepsilon \)

\[KE = E / \varepsilon \]

Characteristic Power = \(E / \tau \)
Cost estimate

State-of-the-art pulsed power devices:
 NIF $6 / megawatt
 Z machine $3 / megawatt
 Atlas $12 / megawatt

Adopt $1/joule and $10 / megawatt for this type of pulsed-power supply

Make estimate:

\[\text{MTF cost (\$)} = 1 \times \text{KE (J)} + 10 \times \text{Pwr (MW)} \]
Generic MTF facility cost vs. pressure

- Iter-FEAT
- FIRE
- NIF
- Z
- Atlas
- Generic MTF
- Generic Tokamak
- High pressure tokamak

Pressure (atmospheres)

Cost ($Millions)
Energy confinement – specific targets

ICF: electron thermal conduction
\[\chi = \lambda \, v_e \]
\[\lambda = \text{m.f.p.,} \]
\[v_e = \text{elec. thermal speed} \]

Field Reversed Configuration: empirical scaling
\[\chi = \rho_i \, v_o \]
\[\rho_i = \text{ion gyro radius} \]
\[v_o = 4 \times 10^6 \, \text{cm/s} \]

Wall-confined Bohm thermal conduction
\[\chi = \rho_i \, v_i / 16 \]
Facility costs - specific plasma targets
Wall-confined Bohm-like plasma

Pusher material with density ρ

$\alpha = \frac{dR}{R}$

$L \approx R$

10 keV plasma mixed with magnetic field
Computations show wall-confined plasma cools at acceptable rate

5x10^{19} \text{ cm}^{-3}

1 \text{ keV}

50 \text{ T}

2 \times 10^4 \text{ bar}

\begin{align*}
n & \quad \begin{array}{c}
\text{Z pinch } B_\theta \\
\theta \text{ pinch } B_z
\end{array} \\
\text{Z} & \quad \theta
\end{align*}

\begin{align*}
\text{r} & \quad 3 \text{ cm} \\
3 \text{ cm} & \quad 3 \text{ cm}
\end{align*}
Russian MAGO has wall-confined plasma

Inverse pinch acceleration

Nozzle action
Conceptual experiment to study wall-confined plasma

- Insulator
- Ground
- Aluminum
- Inverse pinch current sheet
- $T \sim 0.5 \text{ keV}$
- $n \sim 10^{17} \text{ cm}^{-3}$

- 1 MA
- $\sim 0.1 \mu s$
- 5 cm
- Center-line
Program plans

DOE Office of Fusion Energy Sciences Exploratory Research

- Develop FRC target plasma FY 2002-2003 $2-4 M / year

Proposed:

- Liner implosion Shiva Star FY 2003-2004 $4-6 M / year
- Liner implosion Atlas FY 2005-2008 $10-20 M / year

NASA Marshall Space Flight Center

- Plasma-gun implosion system FY 2002 – 2004 $2-3 M / year

Actual budgets in black
Anticipated budgets being proposed in red
Technical issues

• Plasma target formation, stability, and energy confinement at high density
• Wall-plasma interactions and impurity mixing with fusion fuel
• Gain limitations using batch-burn mode
• Practicality of pulsed operation
Conclusions

- MTF warrants exploration given its potential as a low-cost approach to fusion
- The cost results are derived from simple considerations and experience with pulsed-power facilities; not plasma physics.
- Plasma physics will determine the detailed behavior and ultimate optimization of an MTF system.
- Experimental facilities already exist that allow testing of many critical MTF issues.
- This research is just beginning; interested scientists are encouraged to contact any of the authors (more information at http://fusionenergy.lanl.gov).