Confinement and heating studies on the National Spherical Torus Experiment (NSTX)

E.J. Synakowski
Princeton Plasma Physics Laboratory
Princeton, New Jersey USA
for the NSTX Research Team

12th International Toki Conference and the 3rd General Scientific Assembly of the Asia Plasma & Fusion Association
December 11 - 14, 2001
A program goal is to understand the physics specific to high beta and low aspect ratio

- Overview of operating scenarios, tools
- Neutral beam heating & transport
- Electron heating & transport
- The edge

Change the aspect ratio, increase beta: what physics changes?
NSTX operational capabilities increasing, and allow confinement studies to begin

Baseline (Achieved)
- Major Radius 0.85 m
- Minor Radius 0.68 m
- Elongation ≤ 2.2 (2.5)
- Triangularity ≤ 0.6 (0.7)
- Plasma Current
 - 1 MA (1.4 MA)
- Toroidal Field
 - 0.6 T (≤0.45 T)
- Heating and CD
 - 5 MW NBI (5 MW)
 - 6 MW HHFW (6 MW)
 - 0.5 MA CHI (0.4 MA)
- Pulse Length
 - ≤ 5 sec (0.5 sec)
Local transport studies focus on understanding global trends.

NSTX

- **Core transport physics**
 - NBI: Ion thermal energy *higher than expected* with neoclassical ions
 - NBI & HHFW: Electron channel dominates

- **Thermal transport**
 - Heating: Heating puzzle with NBI

- **Impurity ion particle transport**
 - Close to neoclassical when measured

- **Theory of instabilities**
 - NBI: $k_\theta \rho_i >> 1$ dominant, $k_\theta \rho_i < 1$ stable or suppressed

Kaye; Sabbagh (Columbia)

Graph:
- τ_{E}^{99P} (ms) on the x-axis
- τ_{E} (ms) on the y-axis

- Data points marked with circles for maximum stored energy and diamonds for pre-mhd.

- L mode: $x1$ and $x2$.
NSTX Systems, Diagnostics, Analysis Tools Enable Study of Local Transport

- **NBI**: 80 kV, deuterium
- **HHFW**: 30 MHz, 12 strap antenna
- **MPTS**: $T_e(R,t), N_e(R,t)$
 - 10 ch., 60 Hz
- **CHERS**: $T_i(R,t), V_\phi(R,t)$
 - 16 ch., 20 ms
- **EFIT**: Equilibrium
- **TRANSP**: Transport Analysis
- **GS2**: Gyrokinetic Analysis
Neutral beam heating yields high ion temperatures in high current plasmas

- $T_i > T_e$
- T_i broad
- Edge V_ϕ pedestal
- Large V_ϕ: co-directed NBI

L mode
1.2 MA, 0.33 T
4.8 MW NBI
Ion Thermal Confinement Better Than Electrons

- $T_i > T_e$
- Classical P_{NB} 2:1 electrons:ions
- Peaked NB deposition

\[\beta_T \sim 23\% \]

T_e (keV), T_i (keV)

P_{be}, P_{bi}
Power Balance Points To Puzzles

<table>
<thead>
<tr>
<th>Power Source/Sink</th>
<th>ELECTRONS (MW)</th>
<th>IONS (MW)</th>
<th>NET (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OHMIC Heating</td>
<td>1.2</td>
<td>0</td>
<td>1.2</td>
</tr>
<tr>
<td>BEAM Heating</td>
<td>2.77</td>
<td>1.42</td>
<td>4.19</td>
</tr>
<tr>
<td>i-e Coupling</td>
<td>2.73</td>
<td>-2.73</td>
<td>0</td>
</tr>
<tr>
<td>dW/dt</td>
<td>0.11</td>
<td>-0.54</td>
<td>-0.43</td>
</tr>
<tr>
<td>Other*</td>
<td>-0.66</td>
<td>0.26</td>
<td>-0.4</td>
</tr>
<tr>
<td>NET POWER IN</td>
<td>6.15 MW</td>
<td>-1.59 MW</td>
<td>4.56 MW</td>
</tr>
<tr>
<td>“Misplaced Heating”</td>
<td>< -1.59 MW</td>
<td>>1.59 MW</td>
<td>0.0 MW</td>
</tr>
<tr>
<td>NET POWER OUT</td>
<td>< 4.56 MW</td>
<td>> 0.0 MW</td>
<td>4.56 MW</td>
</tr>
</tbody>
</table>

TRANSP 106382A01 @ 0.25 s

*Beam Thermalization, Rotation, Radiation, Convection

More Power Out of Ions Than In!

Need Extra Ion Heating to Balance Power
Summary of power balance with NBI

- T_i consistently larger than T_e, despite expected large fraction of electron heating by beams
 - \Rightarrow electron conduction is the dominant loss channel

- Power balance makes sense if
 - χ_i is exceptionally low
 - Ions get more heat from fast ions than expected classically

- Diagnostic validation ongoing

- Non-classical effects in heating and Q_{ie} being explored
Astrophysics and observed MHD may hold one clue to the power balance puzzle

- Being investigated: Compressional Alfven Eigenmodes
- Modes excited by fast ions; waves transfer energy to thermal ions

Fredrickson

However, initial study suggests:
low $E_{\text{beam}} \Rightarrow$ no CAE modes observed, but ion stored energy is still too high

Fredrickson

- Theory of stochastic wave heating of corona developed (White)
- Application of theory to ST has begun
- $V_{\text{beam}} > V_{\text{Alfven}}$ key

Gates, Gorelenkov, White
Low ion particle transport consistent with low ion thermal transport

- After neon puff, almost no neon penetrates the core until MHD event near 260 ms
- Modelling suggests core diffusivity $< 1 \text{ m}^2/\text{s}$, near neoclassical theory

Signals from difference of similar plasmas with and without neon puff

USXR measurements of He-, H-like neon lines
Theory: short wavelength modes may dominate transport, long wavelength modes may be suppressed

- Long λ, low k (ITG, TEM):

 * $growth rate < ExB shear rate$

 - Large λ associated with ion thermal transport
 - Low aspect ratio: Analysis suggests $\nabla \beta$ strongly stabilizing

- Low λ, high k (ETG):

 * $growth rates large$

 - Responsible for electron thermal transport?
 - Non-linear simulations begun to estimate possible fluxes

C. Bourdelle (PPPL), W. Dorland (U. MD)
• $T_e > T_i$ with auxiliary power to electrons
Electron Loss Channel Also Dominant with HHFW Heating

- Power deposition: HPRT ray tracing code
- $\chi_i \sim 2-2.5 \chi_i^{NC}$, $\chi_e \gg \chi_i$
- ETG unstable
- Low k_θ modes ITG + TEM
Power balance analysis reveals that reduced electron transport is correlated with high T_e.

- Core χ_e drops as high T_e develops
 - Steep gradients due to transport changes, not source

- Heating source from HPRT ray tracing (Rosenberg)

![Diagram showing electron thermal conductivity vs normalized minor radius]
Bifurcations to enhanced plasma confinement state observed with both NBI and HHFW

Visible light, false color

Before transition After transition

• NBI: Power required ~ 10x that predicted from empirical scaling laws:
 – Strong magnetic shear?
 – Poloidal damping? Wall neutrals?

• Change in edge transport evident in density profile

• Fluctuations reduced at H mode transition

Edge reflectometry: Peebles, Kubota (UCLA)

Fast camera: Maqueda (LANL) H mode: Maingi, Bush (ORNL); LeBlanc
Imaging of edge reveals qualitative differences in H- and L-mode turbulence

- BOUT code: turbulence modeling
 - 2-fluid,3D Braginskii equation code

Maqueda, LANL; Zweben

Los Alamos
NATIONAL LABORATORY
Imaging of edge reveals qualitative differences in H- and L-mode turbulence

- Helium puffed; emission viewed along a field line
- He^0 emission observed with a fast-framing, digital, visible camera
 - 1000 frames/sec, 10 μs exposure each frame

Maqueda, LANL; Zweben
HHFW-driven H modes found

- LSN
- Lower current (350 - 500 kA)
- He and D
- ELMy, ELM-free
- $\beta_p = 1$ observed
 - Large bootstrap?
 - Large dip in surface voltage

Starting scenario for future CD work?
Studies of underlying physics of ST transport has begun

- Kinetic profiles are enabling initial local transport analysis

- **NBI**: $T_i > T_e$, despite prediction that $2/3 P_{NBI}$ goes to electrons
 - Electrons are the dominant loss channel
 - Ion heating not understood
 - Low particle transport correlated with low ion thermal confinement
 - **ExB** shear suppression of low k modes seen in analysis at high beta
 - Exploring role of ETG

- **HHFW**: $T_e > T_i$
 - Electrons are the dominant loss channel
 - Reductions in χ_e with strong central T_e peaking
 - Possible role of T_e/T_i in determining χ_e to be investigated
Summary (2)

- L-H transitions observed with NBI and HHFW
 - Turbulent structures observed in L mode state; modelling underway
 - $P_{th} \sim 850 \text{ kW for NBI; } \approx \text{ similar-sized tokamaks, } >> \text{ scaling}$
 - Role of strong poloidal damping at low aspect ratio?

- Near-term transport goals and plans
 - Understand ion heating
 - Turbulence measurements to be extended into core
 - Scans of beta: is beta or $\nabla \beta$ favorable for transport?

- Long-term goals
 - Establish a physics-based understanding of the underlying causes of ST transport trends
 - Comparison with moderate-aspect-ratio trends will reveal new physics relevant to all