Study of Time Evolution of Toroidal current in LHD

Kiyomasa Y. Watanabea, Satoru Sakakibaraa, Hajime Sasab, Michael Yakovleva, Kiyohiko Nishimuraa, Sadayoshi Murakamia, Noriyoshi Nakajimaa, Hiroshi Yamadaa, Kazushige Nariharaa, Ichihiro Yamadaa, Kazuo Kawahataa, Tokihiko Tokuzawaa, Kenji Tanakaa, Katsumi Idaa, Shigeru Moritaa, Osamu Kanekoa, Katsuyoshi Tsumoria, Katsunori Ikedaa, Yoshiro Narushimaa, Tomohiro Morisakia, Akio Komoria, LHD experimental groupa and LHD device engineering groupa

a) National Institute for Fusion Science, Toki, Gifu 509-5292, Japan
b) Japan Atomic Energy Research Institute, Naka, Ibaragi, 311-0193, Japan

\textit{Tangential View of LHD}
Toroidal Current --- Observation ---

In principle
Toroidal current for plasma confinement is not necessary in Heliotron devices!!

Observation in LHD
In NBI discharge
More than 100kA of toroidal current is observed.

No active control of one turn voltage

\[
B_0=0.75\sim 2.9T, \ H_2, \ R_{ax}V=3.6/3.75m, \\
I_p= -30\sim 110kA, \Delta t(a) = -0.04\sim 0.1.
\]

Toroidal current affects MHD equilibrium, stability and Transport in Heliotron devices

Determination of Driving Mechanism; **Important!!**

Candidates of Current Driving Mechanism; **Ohkawa Current & Bootstrap Current**
Outline of talk

1. Properties of Bootstrap Current in Heliotron devices
2. Experimental Observation of Bootstrap current in LHD
 (including comparison results between experimental data and theoretical prediction)
3. Observation of MHD activity and rational surface
 (A MHD activity indicates information of central rotational transform)
 ➜ Information leads to determination of the current profile
Properties of Bootstrap Current in Heliotron devices (1)
- profile TOKAMAK vs LHD (Heliotron) -

\[\frac{I_{BSC-LHD}}{I_{BSC-TOK}} \approx 0.5 \]

- \textbf{LHD} -

\[j_{BS} \sim \left(\frac{f}{f_c} \right) G_{bs} * \frac{dP}{ds} \]

\textit{in banana}(1/v)-regime

\textbf{equiv. TOKAMAK}

- BS current profile in LHD is much broader than TOKAMAK

\textit{comes from}

\textit{Difference of Radial profile of q and geometrical factor between TOKAMAK and LHD}
Properties of Bootstrap Current in Heliotron devices (2)
- Dependence on Magnetic Axis Configuration -

\[j_{BS} \sim \left(f / f_c \right) G_{bs} \rho G_s \frac{P*(n'/n+a_1 T_i'/T_i+a_2 T_e'/T_e)}{a_1, a_2 \sim O(+0.1)} \]

\[G_{bs}^{tok} = I_p / 2 \pi \]

Geometric Factor (BS current)

strongly depends on Magnetic Axis Position!!

Note!!

Magnetic Axis goes torus-outwardly =>

Geometric factor significantly decreases and changes the sign.

Geometrical Factor for LHD in 1/v-regime

- Device center
- Magnetic axis position, \(R_{ax} \) (m)
- Geometric factor, \(G_{bs} / G_{bs}^{tok} \)
- Standard configuration

- Standard configuration
- Magnetic Axis goes torus-outwardly
- Geometric factor significantly decreases and changes the sign.
Time evolution of toroidal current and the estimation of non-inductive current

\[R_p \frac{dI_p}{dt} = V_{loop} + R_p I_{NI} \]

\[V_{loop} = -L_p \frac{dI_p}{dt} + \sum_i M_{ip} \frac{dI_i}{dt} \]

- \(I_p \): observed plasma current
- \(I_{NI} \): non-inductive plasma current
- \(V_{loop} \): one-turn voltage (self-induced part is dominant in LHD.
- When \(\frac{dI_p}{dt} = 0 \), \(V_{loop} \approx 0 \)
- \(I_i \): increment of current in helical coils, vacuum vessel and so on.
- \(M_{ip} \): Mutual inductance between i-component and plasma.
- \(L_p \): self-inductance of Plasma
- \(R_p \): resistance of plasma (Tokamak neoclassical used here)

\[\sum_{i} M_{ip} \frac{dI_i}{dt} \]

Measure

Calculate

Helical coil

Poloidal coil
Experimental result for non-inductive current (1)
- \(W_p \) and collisionality dependence in NB balanced injection -

Observed toroidal current increases with \(W_p \) increasing.
Collisionality increases
=> Observed current decreases

Probable candidate of current driving mechanism;
Bootstrap Current
Comparison result with theoretical prediction

- W_p dependence -

Theoretical calculation of BS current

 - BS current calculation with the consistent MHD equilibrium
 - Connection formula from $1/\nu$ to P-S collisional regime
 - BS current is estimated based on momentum method for asymmetric devices proposed by K.C Shaing *et al.*

2. n_{e-bar} and T_e are used by measurement. n_e profile is assumed as $\sim (1-p^8)$

3. $Z_{eff}=2$, $T_e = T_i$ are assumed.

- Calculated result agrees with experimental data in W_p dependence.
- Direction and Amplitude of theoretical prediction also agrees.
Experimental result for non-inductive current (2)
- Magnetic axis configuration dependence in NB “balanced” injection -

Co-Injected power is larger by 20% than Cntr-one.
Co/ 2.0MW, Cntr/ 1.6MW

• NB injection Condition
 keeps same during above experiment sequence in magnetic axis changing.

Observation
- R_{ax} goes torus-outwardly =>
- Observed toroidal current decreases
Comparison result with theoretical prediction
- Magnetic Configuration dependence -

Pick up data with almost same beta value $\beta=0.33\sim0.41\%$

Observation
- R_{ax} goes torus-outwardly
 => toroidal current decreases

=> • Agrees with BS behavior predicted in theory.

• *Cntr-Direction current not observed clearly!!*

Theoretically predicted in torus outward magnetic axis shift configuration
MHD activity and rational surface (1)

In LHD “Magnetic axis torus-inward shift” configuration ($R_{ax}=3.6m$),

Even in low beta regime ($\beta>0.3\%$),
$m/n=2/1$ (Magnetic fluctuation) is observed generally.

m: Poloidal mode number
n: Toroidal mode number

Rational surface of $\iota=1/2$ is located at $\rho=0.5$ in $R_{ax}=3.6m$ config. (vacuum).

Remark!!

In high beta discharge with high positive toroidal current
(0.75T, $R_{ax}=3.6m$, $\beta\sim2\%$, $\delta_1(a)\sim0.04$ due to I_p)

$m/n=2/1$ (Magnetic fluctuation) suddenly disappears.
Theoretical Analysis with Currentless assumption
(MHD equilibrium is calculated using pressure profile obtained by measurement)

- \(\iota = 1/2 \) surface exists \((\iota_0 < 0.5)\)
 both before and after disappearance of 2/1 mode.

- The plasma after disappearance of 2/1 mode is more Mercier unstable
 than that before disappearance of 2/1 mode

Most probable explanation of 2/1 mode disappearance

- Rational Surface \((\iota = 1/2)\) disappears.

Compare between time trace of central rotational transform based on calculation and MHD activity
Basic Equation for Time Evolution Analysis of toroidal current profile

\[\frac{\partial I_p}{\partial t} = 4\pi S \frac{\partial}{\partial S} \left[\frac{1}{\sigma} \frac{\partial}{\partial S} (I_p - I_b) \right], \quad J_p(S,t) = \frac{\partial}{\partial S} I_p, \quad S = \pi r^2 \]

Boundary condition

\[I_p(0,t) = 0, \quad \left. \frac{\partial}{\partial S} (I_p - I_b) \right|_{S=\pi a^2} = \frac{1}{2\pi R_0} (V_{\text{loop}} - L_{\text{ext}} \int_{S=\pi a^2} J_p \, dS), \quad L_{\text{ext}} = \mu_0 R_0 \left[\log \frac{8R_0}{a} - 2 \right] \]

Initial condition

\[J_p(S,0) = J_o(S) \]

Thermal conductivity (applying neoclassical theory in TOKAMAK)

\[\sigma = \sigma_{spitz} \left(1 - \sqrt{\varepsilon} \right) \left(1 + 0.039\sqrt{\varepsilon} \right) / \left(1 + 0.471\sqrt{\varepsilon} \right), \]

\[\sigma_{spitz} = 1.65 \times 10^{-5} z_{\text{eff}} \ln A / T_e^2, \quad \ln A = 23 - \ln \left(\sqrt{n_e \times 10^{-6}} / T_e \times 10^3 \right) \]

Non inductive current \(I_b \)

\[I_b = I_{\text{bs}} \text{(BS-current)} + I_{\text{beam}} \text{(Ohkawa-current)} \]

BS current; calculated by SPBSC code

Ohkawa current; cal. by MCNBH code (considering orbit and CX loss)
Calculation result of toroidal current evolution

- Co dominant-NB Injected
- *Non inductive current is almost same with time.*
- **Ohkawa current is decreasing**
 \(n_e \) gradually increases
- **BS current is increasing with time.**
 \(W_p \) gradually increases,
 central \(n_e \) profile hollow => flat
 central \(T_e \) profile => peaked
Comparison between time traces of m/n=2/1 magnetic fluctuation and calculated central rotational transform

\[\frac{b}{B_p} \times 10^{-5} \]

\[m/n=2/1 \text{ mode} \]

\[\begin{array}{c|c|c|c|c|c|c|c|c|c|c} \hline t & 1.2s & 1.6s & 2.0s & 2.4s & 2.8s & 3.2s \hline \hline \rho & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 & \hline \end{array} \]

Cal. result with toroidal current

\[\iota \]

Current density

\[\text{Result!} \]

Timing, when m/n=2/1 disappears, is close to theoretically predicted timing when \(\iota=1/2 \) rational surface disappears.

\[1.2s < t < 1.8s \]

- peaked current profile due to \(I_{\text{ohkawa}} \)

\[1.8s < t < 2.7s \]

- flat current profile (\(I_{\text{ohkawa}} \) decreases, \(I_{BS} \) increases)

\[\Rightarrow \iota=1/2 \text{ surface appears} \]

\[2.8s < t \]

- peaked current profile due to \(I_{BS} \) (peaked pressure profile) \(\Rightarrow \iota=1/2 \text{ surface disappears} \]
Summary

We analyze the non-inductive toroidal current in LHD experiments with balanced NB-Injection.

1. We experimentally obtain the dependence of non-inductive current on W_p and R_{ax}.
2. W_p and R_{ax} dependence agree with theoretical prediction based on BS current for Heliotron devices.

We analyze the MHD activity behavior in high beta LHD experiment with high toroidal current ($\beta > 2\%$, $\Delta \tau(a)$ due to $I_p > 0.05$) and time evolution of toroidal current profile.

1. The possibility of determination of current profile (central rotational transform) by measuring existence of m/n=2/1 in LHD.
2. Timing, when m/n=2/1 disappears, agrees with theoretically prediction when $\tau=1/2$ rational surface disappears based on BS-current and Ohkawa current.