

1

ITC-12/APFA701 December 11(TUE) ~ 14(FRI), 2001 Ceratopia, Toki City, Japan

High Performance Operational Limits of Tokamak and Helical Systems

Kozo Yamazaki^a and Mitsuru Kikuchi^b

^{a)} National Institute for Fusion Science, Toki, Gifu 509-5292, Japan ^{b)} Japan Atomic Energy Research Institute, Naka, Ibaraki 311-0193, Japan

Outline

- **1. Introduction**
- 2. Achieved operational domain
- **3. Equilibrium Properties**
- 4. Confinement
- 5. Stability Limit
- 6. Density Limit
- 7. Steady-State Operation
- 8. Reactor Prospect
- 9. Summary

INTRODUCTION

For the realization of attractive fusion reactors, plasma operational boundaries should be clarified, and be extended to the higher performance limit.

There are several plasma operational limits:

- (1) confinement Limit,
- (2) stability Limit,
- (3) density limit, and
- (4) pulse-length limit.

Here we would like to discuss on a variety of toroidal plasma operational limits focusing on the similarities and differences between TOKAMAK and HELICAL systems.

Maximum Parameters Achieved

	ТОКАМАК		HELICAL	
Electron Temperature		(ASDEX-U,		
T _e (keV)	25	JT-60U))	10	(LHD)
Ion Temperature				
T _i (keV)	45	(JT-60U)	5.0	(LHD)
Confinement time	1.2	(JET)		
t _E (s)	1.1	(JT-60U,NS)	0.36	(LHD)
Fusion Triple Product				
n _i t _E T _i (m ⁻³ ⋅s・ keV)	15x10 ²⁰	(JT-60U)	0.22x10 ²⁰	(LHD)
Stored Energy	17	(JET)		
W _p (MJ)	11	(JT-60U,NS)	1.0	(LHD)
Beta Value	40 (toroidal)	(START)		
b (%)	12 (toroidal)	(DIII-D)	3.0 (average)	(LHD,W7-AS)
Line-Averaged Density				
n _e (10 ²⁰ m⁻³)	20	(Alcator-C)	3.6	(W7-AS)
Plasma Duration	2 min	(Tore-Supra)	2 min	(LHD)
t _{dur}	3 hr. 10min.	(Triam-1M)	1 hour	(ATF)

Operation Regime and Reactor Requirements

$$\boldsymbol{r}_* = \boldsymbol{r}_s / a \sim \sqrt{T} / (aB)$$

$\boldsymbol{n}_* = \boldsymbol{n}_{ei} a / \boldsymbol{n}_{th} \sim na / (\boldsymbol{e}^{5/2} T^2)$

Normalized parameters $\boldsymbol{b} = nkT / B^2 \sim nT / B^2$

HELICAL

5

Similarities and Differences between Tokamak and Helical Systems

_			
Equilibrium		STANDARD TOKAMAK	STANDARD HELICAL
	Plasma Boundary Shape	2D	3D
	Magnetic Field Components	Toroidal (m,n)=(1,0)	Toroidal (1,0) +Helical (L,M)+ Bumpy (0,M) Ripples
	Plasma Currents	External + BS Currents	No net toroidal current or BS Current
	q-profile	Normal or Reversed shear profile	Flat or Reversed shear profile
	Divertor	Poloidal divertor 2D	Helical or island divertor 3D
Physics		STANDARD TOKAMAK	STANDARD HELICAL
Properties	Magnetic shear	Substantial Shear or Shearless in the core	Substantial Shear
	Magnetic Well	Well in whole region	Hill near edge
	Radial Electric Field	driven by toroidal rotation & grad-p	driven by non ambipolar loss (Helical Ripple)
Γ	Toroidal Viscosity	Small	Large (Helical Ripple)
	grad-j, grad-p	grad-j driven grad-p driven	grad-p dominant
	Island, Ergodicity	near separatrix	Edge Ergodic Layer

Advanced Plasma Shapes

Magnetic Shear / Well

Radial Electric Field & ITB

TOKAMAK

Er shear driven by toroidal rotaion and grad-p (JT-60U,Shirai)

HELICAL

Positive electric field driven by ripple loss in low density regime predicted by Neo-Classical Theory NC-ITB (CHS, Minami & Fujisawa)

Island, Ergodicity and Divertor

TOKAMAK **HELICAL Poloidal Divertor Helical Divertor ITER** LHD Divertor Helical Coll Vacuum Vesse First Wall X-Point Divertor Plasma Plasma Divertor Plate Graphite Tiles Baffle Pla ⁵ R (m) ¹⁰ 0

Island Divertor

W7-AS, LHD

Short connection length **Rather clean separatrix**

Stability Limits grad-j dominant or grad-p dominant?

Helical 12 **Tokamak** DIII-Ď Mercier Dlagram BH 10 **Beta** 3.0 8 obtained **Ideal beta agrees** DIII-D Stability ନ୍ଷ beyond 6 θ with Ideal MHD PBX-N Mercier 2.0 β_t (%) V''=0 ITER 4 mode -11 **Resistive beta** JT-60U 2 ASDEX 1.0 agrees with NTM & Global TM, RWM theories mode is 0 2 1 3 Normalized current I/aB (MA/m/T) still 0 0 0.2 high-bN marginal. medium p0/ 5 qedge/q0=4 **JT-60U** 6 LHD Δ Volume Averaged Beta (%) qedge/q0=6 3 z _ 2 2 high-**b**p mode 1 large po/ -mode 0 0.2 0.4 0.6 0.8 1.2 0 eb_p 3.6 Magnetic Axis Position (m)

Mode structure

HELICAL

(JT-60U, Takeji) **ERATO-J code**

TOKAMAK

Global mode driven by grad-j

(LHD, Nakajima) *Localized mode* CAS3D code *driven by grad-p*

Low-n mode is interchange-like.

Effects of Wall

Tokamak

Kink-ballooning modes driven by grad-j & grad-p can be easily stabilized by the fitted wall.

Helical

Mode is localized and there is no strong wall effect on pressuredriven mode, but substantial effects on BS current-driven external mode.

Operational Density Regime

Tokamak

radiation collapse leading to current disruption

Helical

radiation collapse slow plasma decay

Disruption-Free in Helical System ?

Tokamak - Helical Hybrid (Current Carrying Stellarator)

WVII- A Team, Nucl. Fusion 20 (1980) 1093.

JIPP T-II

0.2

Steady-state Operation

Tokamak

NB Current Drive in JT-60U RS Elmy H-mode

Helical

Progress on Reactor Designs

Lower-aspect designs are explored.

Operational Limits

	STANDARD TOKAMAK	STANDARD HELICAL	
Confinement	Gyro-Bohm	Gyro-Bohm (Global) Helical Ripple Effect (Local)	
Beta Limit	Kink-Ballooning Mode Resistive Wall Mode Neoclassical Tearing Mode	Low-n Pressure-Driven Mode	
Density Limit	Radiation & MHD Collapses	Radiation Collapse	
Pulse-Length Limit	Recycling Control Resistive Wall Mode Neoclassical Tearing Mode	Recycling Control Resistive mode (?)	
Beyond limit	Thermal collapse		
	Current quench	Thermal collapse	

Summary

For realization of attractive fusion reactors, **better confinement** and **longer-pulsed operations** should be achieved in addition to burning plasma physics clarification.

In tokamak systems, critical issue is to avoid disruption and to demonstrate steady-state operation.

In helical systems, high performance discharges should be demonstrated with reliable divertor, and compact design concepts should be developed.

Each magnetic concepts should be developed complementally focusing on above critical issues keeping their own merits, for realization of attractive reactors and for clarification of common toroidal plasma confinement physics.