Diffusion MRI principles and its application

H. Fukuyama, M.D., Ph.D. Human Brain Research Center Kyoto University Graduate School of Medicine

The Nobel Prize in Physiology or Medicine 2003

Paul C. Lauterbur University of Illinois Scho Principles of MRI

r Sir Peter Mansfield University of Nottingham, School of Physics and Astronomy <u>E</u>cho <u>P</u>lanar Imaging

T1,T2 weighted images FLAIR Susceptibility weighted images Diffusion weighted images

Figure 2 (*continued*). (c) DW image and (d) relative CBV map demonstrate focal abnormalities in the right deep gray matter consistent with acute ischemia. d demonstrates normal CBV in the cortex, which indicates good collateral flow. (e) Follow-up MR image obtained 5 days later confirms the overall extent and location of the infarct. There is relatively little mismatch between c and d.

Sorensen GA Radiology 199:391, 1996

d.

Acute stroke

DWI

T2WI

FLAIR

Ischemic penumbra

Diffusion weighted image

MR angiography

Creutzfeldt-Jacob Disease

60 y.o female Sporadic CJD

50 y.o female Heidenhain variant

Diffusion weighted image

Brownian motion

Diffusion image sequence

EPI : Echo Planar Imaging

B factor and signal intensity

Anisotropy

Anisotropy and Diffusion tensor imaging

$$\mu_{i} = S_{0} \exp(-b_{i} \mathbf{r}_{i}^{T} \mathbf{D} \mathbf{r}_{i})$$
$$\mathbf{D} = \begin{bmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{xy} & D_{yy} & D_{yz} \\ D_{xz} & D_{yz} & D_{zz} \end{bmatrix}$$

Tractography in Diffusion MRI

Mori et al. NMR Biomed 2002

Color-coded DTI

Okada, Miki, et al., Radiology 2006; 238:668-78

3T

1.5T

Tractography methodology in 3 Tesla

81 direction of Diffusion weighted images

- 3 tesla Siemens Trio MRI scanner
- diffusion weighted image using echo planar imaging sequence
- $b = 700 \text{ s/mm}^2$
- Voxel size 2 x 2 x 2 mm
- FMRIB Software (http://www.fmrib.ox.ac.uk/fsl/)

Brain Activation

Roy & Sherrington

BOLD (blood oxygen level dependency) Dr. S. Ogawa

PNAS 2001; 98: 9391-9395

DfMRI (Le Bihan et al. PNAS 102, 8263-8268, 2006)

BOLD fMRI: Hemodynamic events...

Diffusion fMRI: Membrane events...

S

\rightarrow Other more direct mechanisms?

Small induced electric axonal currents (≈ EEG/MEG) ? [Song et al, 8th ISMRM, 54 (2000), Bordurka et al. MRM 2002, Bonn et al. MRM 2003, this meeting!]

"Diffusion fMRI": detection of cell swelling induced by neuronal activation?

cell size and membrane surfacediffusion of water near membranes

- Seurotransmission: Ca²⁺ inflow as seen with MnMRI ? [Lin and Korestky, MRM 1997, Pautler et al. NI 2002, MRM 2003]
 - **Structural events induced in activated cortical cells** [Darquie et al. PNAS 2001, Le Bihan et al. ISMRM 06, PNAS 2006]

→ Early marker of neuronal activation ?

3T MRI scanner (Siemens Trio)

8-ch. phased array (GRAPPAx2) 40mT/m gradient coils

-twice refocused spin-echo EPI -diffusion-sensitization by an interleaved pair of bipolar gradient pulses

Materials and Methods PROTOCOL

Acquisition

-Visual stimulation (flickering dartboard):

20s ON/ 20s OFF x 3 3.75x3.75x4mm³, TE=87ms/TR=1s

10 ON/ 20s OFF x 4 2x2x3mm³, TE=93ms/TR=1.5s

-Diffusion-sensitized fMRI

DfMRI: *b-values*=0, 250, 600, 1200, 1800, 2400 s/mm² Biexp model: *b-values*=[0 to 3400 s/mm²]/200 s/mm² increment

- **BOLD fMRI** (TR=1s or 1.5s)

- T1-weighted sequence (0.94x0.94x0.95 mm³ voxels)

Processing

- preparation: *motion correction, registration, smoothing*

- SPM5 on diffusion-weighted images \rightarrow selection of *activated visual VOI* (p=0.001)

DfMRI (Le Bihan et al. PNAS 102, 8263-8268, 2006)

DfMRI (Le Bihan et al. PNAS 102, 8263-8268, 2006)

DfMRI (Le Bihan et al. PNAS 102, 8263-8268, 2006)

Normalized signal change (%)

25

20

6 8

