

16th International Toki Conference Advanced Imaging and Plasma Diagnostics December 5-8, 2006, Toki-city, Japan December 5, 16:40 – 17:10, Oral Session Plasma (Imaging Technology) I3-2

ILE OSAKA

Spectoscopy and Imaging by Laser Excited Terahetz Waves

M. Hangyo, M. Tani, and T. Nagashima Institute of Laser Engineering, Osaka University

はんぎょう 萩行 正憲、谷 正彦、長島 健

大阪大学 レーザーエネルギー学研究センター

Outline

- 1. Introduction
- 2. THz radiation by femtosecond laser excitation
- 3. THz time domain spectroscopy (THz-TDS)
- 4. THz imaging
- 5. Summary

1. Introduction

THz wave

Electromagnetic waves between microwave and visible light

$1 \text{ THz} = 10^{12} \text{ Hz}$

Unexploited region of electromagnetic waves until very recently

Material	Excitation
Semiconductor	Free carrier, Phonon, Plasmon, LO phonon- plasmon coupled mode, Cyclotron resonance, Magnetoplasma
Ferroelectrics	Soft mode
Superconductor	Superconducting energy gap, Quasiparticle excitation, Intrinsic Josephson plasma, 2D- super carrier plasmon-polariton
Photonic crystal	Photonic band
Liquid	Relaxation mode
Gas	Rotational mode, Plasma
Biomolecule	Vibrational mode, Collective excitation related to biological function

2. THz radiation by femtosecond laser excitation

THz Radiation from Various Materials and Devices

Excited by ultrashort laser pulses

ILE OSAKA

- **1** Semiconductor photoconductive antennas (Auston switch)
- 2. Photoconduction at bulk semiconductor surfaces
- 3. Nonlinear optical effect in dielectrics and semiconductors
- **4** Ultrafast supercurrent modulation in high-T_c superconductors
- 5. Photo-ionization of gases under high electric fields
- 6. Various processes in ultraintense-laser-excited gas plasmas

THz Radiation from Photoconductive Antenna

Emission and Detection of THz Waves

Developed as a spectroscopic system mainly by Grischkowsky's group (IBM)

Broadband radiation from nearly 0 to 5 THz

Principle of THz Radiation from Superconductor

3. THz time domain spectroscopy (THz-TDS)

Principle of THz-TDS

$$\tilde{n}(\omega)^2 = \tilde{\varepsilon}(\omega) = \varepsilon_{\rm Si} - i\tilde{\sigma}(\omega)/\omega\varepsilon_0$$

Various Types of THz-TDS System

Transmission type Sample Si hemispherical lens LT-GaAs Current (\mathbf{v}) PC antenna amp. Lens Chopper Lock-in amp. Beam [splitter **Delay stage** Computer Fs pulse laser

Reflection type

System for low-temperature measurements

THz-TDS of Doped Silicon

Complex Conductivity Deduced from THz-TDS Data

High frequency conductivity σ_1 and σ_2 can be obtained without contact. By the Drude model fitting, the carrier density and mobility can be deduced.

Time [ns]

Probed by delayed THz pulses after discharge

Time Evolution of Gas Plasma

THz Magneto-optical Measurement System

THz Magneto-optical Effect of Si-doped GaAs

ILE OSAKA

Faraday effect

Incident THz pulse

10 T, 5 K

Si-doped GaAs

Temperature Dependence

Measurement System for Gases

Transmission Spectrum of Methanol Gas

4. THz imaging

Two Types of Imaging Methods

Distribution of surface field in semiconductors Distribution of supercurrent in superconductors

B. B. Hu and D. H. Auston, Opt. Lett. 20 (1995) 1716

Spectrum of Plastic Bomb

Imaging of Plastic Bomb in Mail

High-speed (Real-time) THz Imaging System

Imaging of Contents in Envelope

THz wave (T-ray) is safe for human bodies in contrast to X-ray.

Relection Type Imaging System

Reflection Image of Coin

Amplitude

Time delay

Tomographic Image of Finger

Supercurrent Distribution by THz Radiation Imaging

S. Shikii et al., Appl. Phys. Lett. 74 (1999) 1317

Ultra-short Pulsed Radar Reflectometer

Cutoff frequency

$$f_{pe} = \frac{1}{2\pi} \sqrt{\frac{e^2 n_e}{\varepsilon_0 m_e}}$$

Delay time of each frequency component corresponds to the plasma density.

Ka-band Ultra-short Pulsed Radar Reflectometer 10ch (28 ~ 39 GHz) T.Tokuzawa, K.Kawahata, and LHD experimental Group Ne -↔ •↔

For ITER, very high frequencies are necessary for full coverage - to \sim 1 THz

THz radiation excited by femtosecond laser is a possible solution.

Problems : low intensity, deflection of reflected beam

of Imaging and Its Applications

Characteristics of THz Waves absorbed strongly by liquid water plastic, paper, ceramics transmit THz waves reflected completely by metals cannot transmit long distance in air

1000 2000 3000 4000 X Axis (μm)

Raster scan type and 2D real time imaging systems are constructed.

The imaging systems are applied to various samples.

Next step is real world applications including plasma diagnostics