Multiplicity of Solar X-Ray Corona in Time and Space

--- initial views by "HINODE" XRT ---

R. Kano, H. Hara (NAOJ), and the XRT team

Instruments aboard "HINODE"

SOT: Solar Optical Telescope Magnetic Activities

at Photosphere

Dynamics in Transition Region & Corona

"Coronal Heating"

How are coronal structures heated?

Solar Atmosphere and Target for Each Instruments

Targets of **XRT** Observations

- Photosphere/Corona Coupling – Cana direct connection be established betw
 - coronal and photosphexe events?
- Coronad Heating Loop Heating – How do coronal structures brighten?
- Flare Energetics
 - What are the relations to the photospheric magnetic fields?
- CMEs, Jets and other coronal dynamical events

SXT Loops vs. ETT/TRACE Loops

SXT loops in active regions

B I Image

Are they really different? Are they heated in a different way?

We would like to observe all of the coronal plasma with a single telescope.
 However, we would like to distinguish between SXT loops and ETT/TRACE loops.
 (Importance of temperature diagnostics.)

Kano & Tsuneta (1996, PASJ)

6.86

3.12

Position: s [10⁹ cm]

-0.62

Aschwanden et al. (1999 &2000, ApJ)

80

Loop length s[Mm]

HINODE/XRT vs. Yohkoh/SXT

	HINODE/XRT	Yohkoh/SXT	
Type of Optics	Grazing Incidence	Grazing Incidence	
FOV	34 arcmin	42 arcmin	
Pixel Size	1 arcsec	2.5 arcsec	
PSF FWHM	<1 arcsec @ center	er ~ 3 arcsec	
Bandpass	3 ~ 200Å	3 ~ 45Å	
Temp. Coverage	1 MK ~30MK	3MK ~ 30MK	
Time Cadence			
Full Frame, Full-res.	min 9.5sec	256sec (Half Frame)	
Full Frame, Half-res.	min 5.0sec	128sec	
	avg. 102sec		
Partial Frame, Full-res.	min 2.0sec	8 sec in flare mode	
(FOV = 300"~400")	avg. 15sec	32 sec in Quiet mode	
Other New Items	Pre-flare Buffer		
	Focus Mechanism		

XRT characteristics

Temperature Response

- TRACE-like image and SXT-like image
- Field-of-View and Spatial Resolution

– Focus Mechanism

- Observation control by MDP
 - Table Observation
 - Image Compression
 - Time Cadences
 - Preflare Buffer

X-ray Analysis Filters

• **XRT** has 9 X-ray analysis filters and a G-Band filter.

Name	Metal	Metal	Substrate	Substrate
		Thickness		Thickness
Thin-Al/Mesh	AI	1600 Å	Mesh	
Thin-Al/Poly	AI	1250 Å	Polyimide	2500 Å
C/Poly	С	6000 Å	Polyimide	2500 Å
Ti/Poly	Ti	3000 Å	Polyimide	2300 Å
Thin-Be	Be	9 µm	Mesh	
Med-Al	AI	12.5 µm		
Med-Be	Be	30 µm		
Thick-Al	Al	25 µm		
Thick-Be	Be	300 µm		

XRT Temperature Response

TRACE-like

Count from unit EM

SXT-like

Plasma Temperature (log K)

Field of View (FOV)

- To point **SOT** at a certain target on the solar disk, we have to change HINODE pointing. Therefore, **XRT** will not always observe the full solar disk.
- Many varieties of FOV size are available.

 Especially, for high-res.observation, we recommend FOV= 1024"x1024" around CCD center.

Aberration at Different Focus Pos.

Observation of **XRT**

Flare Observation

XRT Intensity

XRA

Detect a flare.
Report the location , to all telescopes.

XRA

- •Switch the current observation to Flare one.
- •Lock the Pre-Flare Buffer.
- •(There is an option not to switch to Flare observation.)

SOT

- •Switch the current observation to Flare one, if the flare location is in SOT-FOV.
- •(There is an option not to switch to Flare observation.)

BIS

- •Switch the current observation to Flare one, if the flare location is in EIS-FOV.
- •(There is an option not to switch to Flare observation.)

Solar Corona observed with X-Ray Telescope

- Coronal Holes
 - X-ray Bright Points
- Quiet Sun
 - Formation of Arcade Structures associated with Filament Disappearance
 - Streamers
- Active Regions
 - Flares, Micro-flares
 - Jets, Coronal Mass Ejection
 - Thermal Structures for (quasi-Steady) Coronal Loops

X-ray Bright Points

Global Structures

「ひので」XRT

Cool 1MK + Hot >3MK plasma

only Cool 1MK plasma

Sohojeit

2006/11/04

Coronal Loops

Micro Flares (1)

Micro Flares (2)

Summary

- XRT has high sensitivity for low (1MK) temperature plasma, as well as high temperature plasma.
- **XRT** has the highest spatial resolution as GI imager. **Pixel Size = 1 arcsec**
- **Observation Tables** respond to various observations.
- Autonomous functions support XRT automatic operation.
- Observers can select types of Image Compression
- Built-in visible light optic allows us to align XRT images with SOT images with sub-arcsec accuracy.