PLASMA TURBULENCE IMAGING VIA BEAM EMISSION SPECTROSCOPY IN THE CORE OF THE DIII-D TOKAMAK

George R. McKee

R. J. Fonck, D. Gupta, D.J. Schlossberg, M.W. Shafer University of Wisconsin-Madison

> R. Boivin General Atomics

W. Solomon
Princeton Plasma Physics Laboratory

16TH INTERNATIONAL TOKI CONFERENCE: ADVANCED IMAGING AND PLASMA DIAGNOSTICS

Toki, Gifu, Japan

DECEMBER 5-8, 2006

THE UNIVERSITY WISCONSIN MADISON

- Role of Turbulence in Magnetically-Confined Plasmas
- Motivation to Design, Build and Implement a Higher Sensitivity BES
- Overview of Beam Emission Spectroscopy Diagnostic for 2D Density Fluctuation Measurements
- Design concepts employed for upgraded BES
 - Optics
 - Configuration
 - Filters
 - Detectors
 - Data Acquisition
- Noise Considerations & Measurements
- Example density fluctuation measurements with upgraded BES system
- Visualizations of core turbulence
- Applications: Time-Resolved Velocimetry Analysis
- Summary & Future directions

TURBULENCE DRIVES CROSS-FIELD TRANSPORT OF PARTICLES, ENERGY AND MOMENTUM IN A MAGNETICALLY-CONFINED PLASMA

WHY MEASURE 2D DENSITY FLUCTUATION CHARACTERISTICS?

SEVERAL APPROACHES TO 2D TURBULENCE DIAGNOSTICS HAVE BEEN SUCCESSFULLY DEPLOYED ON PLASMA EXPERIMENTS

C. Fenzi *et al.*, Rev. Sci. Instrum. **72**, 988 (2001). G. McKee *et al.*, Rev. Sci. Instrum. **74**, 2014 (2003).

Imaged edge region due to signal to noise

Gas Puff Imaging @ NSTX, CMOD

S. Zweben *et al.*, Phys. Plasmas 9, 1981 (2002). J. Terry *et al.*, Phys. 10, 1739 (2003).

Views emission shell near plasma edge

Core Plasma Turbulence Imaging capability is needed!

BEAM EMISSION SPECTROSCOPY MEASURES SPATIALLY LOCALIZED, LONG-WAVELENGTH ($k_{\perp}\rho_{I}$ < 1) DENSITY FLUCTUATIONS

$$D^{o} + e, i \Rightarrow (D^{o})^{*} \Rightarrow D^{o} + \gamma (n = 3 \Rightarrow 2, \lambda_{o} = 656.1 \text{ nm})$$

75 KeV D^o Neutral Beam (150 L (R))

BEAM EMISSION SPECTROSCOPY MEASURES SPATIALLY LOCALIZED, LONG-WAVELENGTH ($k_{\perp}\rho_I < 1$) DENSITY FLUCTUATIONS

BEAM EMISSION SPECTROSCOPY MEASURES SPATIALLY LOCALIZED, LONG-WAVELENGTH ($k_{\perp}\rho_I < 1$) DENSITY FLUCTUATIONS

High Temperature Plasma Diagnostics Meeting, Williamsburg, VA-5/2006-G. McKee

BEAM EMISSION SPECTROSCOPY MEASUREMENT OF LOCALIZED, LONG-WAVELENGTH ($k_{\perp}\rho_I < 1$) DENSITY FLUCTUATIONS

NUMEROUS DIAGNOSTIC ENHANCEMENTS YIELD SIGNIFICANT GAIN IN MEASURED SIGNAL

	Parameter	Previous	Upgraded	<u>Gain</u>
1)	Increased light collection:	0.59 mm ² -ster	1.62 mm ² -ster	2.75
2)	Increased filter transmission	1.0	1.5 (w/D $_{lpha}$ CX)	1.5
3)	Larger photodiode detector	0.85 mm ²	2.9 mm ²	1.4
4)	Higher reflectivity mirrors	0.94	0.98	1.05
			Total 6+	

THE UNIVERSITY

MADISON

FACTOR OF 30-50 INCREASE IN SENSITIVITY TO PLASMA DENSITY FLUCTUATION POWER WITH UPGRADED BES SYSTEM

BES DETECTOR AND CONTROL SYSTEM PROVIDES INTEGRATED CONTROL AND FULLY REMOTE OPERATIONS

OVERVIEW OF THE BEAM EMISSION SPECTROSCOPY SYSTEM

FLUCTUATION SPECTRUM EVOLVES DYNAMICALLY THROUGHOUT DISCHARGE

COMMON-MODE FLUCTUATIONS ARE MEASURED AND SUBTRACTED

High Temperature Plasma Diagnostics Meeting, Williamsburg, VA-5/2006-G. McKee

FLUCTUATION SPECTRA AND AMPLITUDE VARY STRONGLY WITH RADIUS

- Density fluctuation amplitude in L-mode discharges shows wide dynamic range across plasma radius
- Spectra strongly Doppler-shifted to higher frequency towards core

TIME-LAG CROSS CORRELATIONS EXHIBIT STRONG SPATIAL ASYMMETRY

- Turbulence has no time-averaged radial propagation, but strong poloidal propagation
- Poloidal correlation length slightly larger than radial:

2D CORRELATION AND $S(k_r, k_{\theta})$ Spectra Confirm Spatial Asymmetry

- Exhibits radially decaying, poloidally wavelike structure, $L_{c,\theta} > L_{c,r}$
- NATIONAL FUSION FACILITY
- Wavenumber spectra can be compared with turbulence simulations

High Temperature Plasma Diagnostics Meeting, Williamsburg, VA-5/2006-G. McKee

TURBULENCE ADVECTS POLOIDALLY AT LOCAL E_rxB_T VELOCITY

 Turbulence Velocity determined from poloidal cross-correlation time-lag analysis from BES

 V_{ExB} determined from ion radial force balance equation and Charge Exchange Recombination Spectroscopy measurements of carbon impurity toroidal and poloidal rotation, temperature and density Poloidal Velocity from BES compared to V_{ExB} from CER

Excellent agreement between independent measurements confirms that turbulence advection at ExB velocity

VISUALIZATIONS OF CORE PLASMA TURBULENCE OBTAINED WITH HIGH-SENSITIVITY BES SYSTEM ACROSS MINOR RADIUS

TIME-RESOLVED EDDY VELOCITY FIELD CAN BE DERIVED FROM **MULTI-FRAME SPATIOTEMPORAL ANALYSIS**

Adapt technique from in fluid dynamics: Orthogonal Dynamic Programming

- *Reduces 2D problem to a set of selected 1D vector-matching problems*
- Utilizes "dynamic programming" to match patterns in related data sets
- ODP then applies successive 1D matching techniques to full 2D data set, first in one dimension, then the other
- Various optimization and tuning parameters

Example output from application to PIV [1]:

High Temperature Plasma Diagnostics Meeting, Williamsburg, VA-5/2006-G. McKee

EXAMPLE SEQUENCE OF TIME-RESOLVED 2D TURBULENCE FLOW FIELD

Vectors represent local velocity field (scaled by image)

RADIAL AND POLOIDAL VELOCITY FLUCTUATIONS EXHIBIT DISTINCT BROADBAND SPECTRA

- Decaying spatial coherence indicates velocity fluctuations have few cm correlation length, similar to density fluctuations
- Spatially increasing phase shift suggests poloidal advection (not shown)
- GAM shows clearly in v_{θ} , not in v_r : zero poloidal phase shift, $2\pi f = c_s/R$

How are \widetilde{v} related to $\widetilde{\phi}$ (through $\widetilde{E}xB$)?

SPATIOTEMPORAL CROSS-CORRELATIONS REVEAL SIGNIFICANT DIFFERENCES IN L-MODE & H-MODE TURBULENCE STRUCTURES

STUDIES OF SMALL-SCALE, LOW-AMPLITUDE PLASMA INSTABILITIES BENEFIT FROM LOCAL, HIGH-SENSITIVITY FLUCTUATION MEASUREMENTS

ANALYSIS OF 2D TURBULENCE MEASUREMENTS ALLOWS FOR INVESTIGATION OF COMPLEX AND NONLINEAR DYNAMICS

High Temperature Plasma Diagnostics Meeting, Williamsburg, VA-5/2006-G. McKee

CONCLUSIONS & FUTURE DIRECTIONS

- Beam Emission Spectroscopy deployed at DIII-D provides time-resolved visualizations of plasma turbulence in the R-Z plane
 - Allowing for detailed characterization of inherently 2D turbulence in magnetically-confined plasmas
- Beam Emission Spectroscopy at DIII-D has been redesigned, component-by-component to provide high-sensitivity 2D measurements:
 - Increased light collection
 - Higher transmission filter
 - Larger area photodiode
 - Net **5-10*** increase in measured signal
 - Advanced control system, expanded lab facility
- Sensitivity to small-amplitude fluctuation power increased by 30-50
- Now provides density fluctuation measurements in the core region (0.25 < r/a < 1.0) of L & H modes (L, H-mode, QH, QDB, Hybrid, AT)
 - Turbulence and energetic particle-driven modes
- High SNR data and advanced analysis enables study of:
 - Zonal flow/Geodesic Acoustic Mode (GAM)
 - Velocimetry (potential fluctuations, turbulent particle flux)
 - Nonlinear: energy transfer, cascades

