Research and Development of Imaging Bolometers

NIFS/JAEA/NFRC/SPSTU Collaboration Funded by MEXT Grants-in-Aid #16560729 & 16082207 B.J. Peterson¹, S. Konoshima², A. Yu. Kostryukov³, N. Ashikawa¹, Yi Liu¹, H. Parchamy¹, H. Kawashima², D.C. Seo⁴, I. V. Miroshnikov³, N. Iwama⁵,

M. Kaneko¹ and the LHD¹ and JT-60U² teams

¹NIFS, Toki-shi, Gifu-ken 509-5292, Japan ²JAEA, Naka-machi, Ibaraki-ken 311-0193, Japan ³St. Petersburg State Tech. Univ., St. Petersburg 195251 Russia ⁴National Fusion Research Center, Daejeon 305-806 Korea ⁵Daido Inst. Tech., Nagoya 457-8530, Japan

16th International Toki Conference December 8, 2006

Topics

Advanced Diagnostics for Burning Plasmas

- Definition and Motivation
- Conventional resistive bolometers
- IRVB concept & data analysis
- Sensitivity, foil material & IR cameras
- JT-60U IRVB
- JT-60U IRVB sample data

- JT-60U IRVB bolometer video
- 2-D profiles with tomography of IRVB
- Plans for JT-60U IRVB Upgrade
- Imaging Bolometer for ITER
- New detector foil R&D
- Summary & Conclusions

- Original definition device whose electrical properties change in response to radiation
- Resistive bolometer first conceived in 1878 by S. P. Langley to measure solar radiation
- Used in fusion plasma physics to measure total, broadband (IR – X-ray) radiated power
- For power balance and impurity radiation studies

B. J. Peterson NIFS, Toki, Japan 509-5292

peterson@lhd.nifs.ac.jp

page

- Real-time measurements of local radiation power loss necessary for fusion reactor
- Fusion reactor conditions pose challenges (RIEMF, fragile contacts, etc.) to conventional existing wire-based radiation sensing devices (resistive bolometers)
- Lack of a simple, reliable and cost effective technique for the measurement of radiation inside the vacuum vessel of a fusion reactor
- Continuing advances in infrared detector technology provide an opportunity to measure radiation fluxes in a reactor environment using thin absorber foils

[1] B.J. Peterson, Rev. Sci. Instrum. 70 (2000) 3696. [2] B.J. Peterson et al., Rev. Sci. Instrum. 72 (2001) 923.

B.J. Peterson et al., Rev. Sci. Instrum. 74 (2003) 2040.

JT-60U IRVB Data Analysis

B.J. Peterson et al., IEEE Trans. Plasma Sci. 30 (2002) 52-53.

IRVB Sensitivity and Foil Material Selection

(µm)

6

4

10

3

9 5

4

2 2.5

0.8

1

10

2

4

2.5

2

4

5

2

2

3

(c)Eph (d)Tm (e)tmin

(C)

232

327

649

1852

2227

321

2617

2996

2468

660

1064

3410

962

1660

1772

1554

1890

1083

1400

1453

1495

419

(keV)

10.0

19.6

1.2

7.6

18.4

10.2

9.4

20.1

8.6

3.9

23.2

21.4

10.7

▲7.8

12.3

23.9

11.0

9.1

6.0

4.4

12.6

12.0

Noise equivalent power [1]:	small	S	small		
	1		,	(a)	(b) к/k
$\sqrt{10}kt \sigma$	14	A14 2 2	\mathbf{T}^{6}	metal	(cm3C/J)
$n_{} - \frac{\sqrt{10\kappa l_f O_{IR}}}{10\kappa l_f O_{IR}}$	<i>l</i>	$-+\frac{4l \varepsilon \sigma_{S}}{2}$	$-B^{I}$	Sn	0.65
$\eta_{IB} = \sqrt{mN} \int \int dr$	$5\kappa^2m^2\Lambda_1$	$\frac{2}{5k^2t^2}$	2	Pb	0.56
V mi V			f	Mg	0.56
		IR camera fra	me interval	Zr	0.55
		# of frames aver IP comoro consit	ageo	Hf	0.52
Simplifying:	# of	IR callel a sellsi	eter nivel	Cd	0.50
$\sqrt{2}$	// U			Mo	0.45
$\sqrt{2kt} \sigma_{IR} l^2$	— bolo	ometer pixel area	1	Та	0.43
$\eta_{IB} \cong \frac{\gamma}{\sqrt{\gamma}} \propto k$	$t_f / \kappa \propto 1 /$	bolometer sensi	tivity	Nb	0.43
$\Delta t_{IR} \kappa \sqrt{m^3 N}$	foi	l thermal conduc	ctivity,	Al	0.41
	thi	ckness, thermal	diffusivity	Au	0.40
Considerations in foil materia	al selection:			W	0.40
•sensitivity or 10/k				Ag	0.40
$\propto K/K$	um foil < 9	koV 9 12 koV	<17 $\log V$ (2)	Ti	0.36
• max. photon energy (for 10	$\mu \Pi I 0 \Pi < 0$	Kev, o-15 Kev,		Zn	0.36
•melting temperature				Pt	0.35
 commercial availability (min 	thickness	of 10cm x 10 cm	foil) [3]	Pd	0.34
•neutron - proof ? (transmutation of Au to Hg)					0.34
• outgassing? . cost? . others?					0.29
[1] B I Peterson <i>et al. Rev. Sci</i>	i Instrum 7	4 (2003) 2040		SS304	0.27
$\begin{bmatrix} 1 \end{bmatrix} \textbf{D} \cdot \textbf{J} \cdot \textbf{I} \textbf{C} \textbf{C} $		- (2003) 2070.		N1	0.25
[2] www-cxro.ibi.gov/optical_c	constants/att	en2.ntml	I	0	0.25
[3] www.goodfellow.com; www	w.nilaco.jp		30th EPS, P-4.67 I	B.J. Pete	erson et al.

Ta and W are stronger and have smaller neutron x-section than Au or Pt

- Strength and thickness reduces motion of the foil
- Low $\sigma_{neutron}$ reduces nuclear heating

	Tensile strength (MPa)	$\sigma_{neutron}$ (Barns)	k (W/m K) @0-100C	к/k (cm ³ K/J)	T _m (C)	$\begin{array}{c} E_{ph} \\ (\text{keV}) \\ @10\mu\text{m} \end{array}$	t _{min} (µm)
Hf	745	103	23.0	0.52	2227	18.4	9
Та	760	22	57.5	0.43	2996	20.1	2
Au	220	98.8	318	0.40	1064	23.2	2.5
W	1920	18.5	173	0.39	3410	21.4	10
Pt	200-300	9.0	71.6	0.35	1772	23.9	2

Foil Material Properties

E_{ph} courtesy Lawrence Berkeley Laboratory: http://www-cxro.lbl.gov/optical_constants/atten2.html material properties from www.goodfellow.com

IRVB sensitivity improves with **IR camera performance**

$$S_{IRVB} = \frac{\eta_{IRVB} N_{bol}}{A_f} = \frac{\sqrt{10} k t_f \sigma_{IR}}{\sqrt{f_{IR} N_{IR}}} \sqrt{\frac{N_{bol}^3 f_{bol}}{A_f^2} + \frac{N_{bol} f_{bol}^3}{5\kappa^2}}$$

						-	
Maker/ IR Camera	FLIR/ Omega (2)	FLIR/ SC500 (2)	FLIR/ A40-M	FLIR/ Phoenix (2)	FLIR/ SC4000	FLIR/ SC6000	SC4000 $ SC6000$ $ SC500$ $ A40$
λ (μm)	7.5-13.5	7.5-13	7.5-13	3-5	3-5	3-5	1000 Phoenix
σ _{IR} (@ 30)	0.1	0.1	0.08	0.025	0.025	0.025	
type	µ bolo	µ bolo	µ bolo	InSb	InSb	InSb	S ^{IRVB} (#
cooling style	none	none	none	Stirling	Stirling	Stirling	10
N _{IR}	160x 120	320 x 240	320 x 240	320 x 256	320 x 256	640 x 512	
f _{IR} (Hz)	30	60	60	345	420	125	1 10 100 1000 1000 1000 1000
*S _{IRVB} (µW/cm ²)	441	156	125	16	14	13	for Au IRVB foil with $A_f = 60.7$
* for IDVD) with 16 x	12 ab 2	20 Uz 1-	- 5625 am	$\Lambda_{11} + - /$	1 miorona	cm², <i>t_f=4</i> μm, <i>t_{bof}=30</i> /s

* for IRVB with 16 x 12 ch, 30 Hz, l = .5625 cm, Au, $t_f = 4$ microns

Imaging Bolometer for JT-60U

•IR camera: Indigo/Omega 67 mK, 30 Hz,

160 x 128 pixels, 14 bit

- Foil: Au, 0.0025 x 70 x 90 mm, E_{ph} < 8 keV
- Bolometer: 33 ms, 12(tor) x 16 (pol) = 192 ch

NEPD > 350 μ W/cm². S/N <100. Δ x = 15 cm

History:

- Foil installation 8/2003, operational 9/2004
- Shielding and data acq. upgrade 9/2005
- Analysis for brightness image 2/2006
- CT reconstruction of 2D profile 11/2006
- First imaging bolometer test in tokamak
- Foil durable vis-a-vis disruptions

CAD of poloidal profile

CAD of IRVB FOV

Radiation profile shifts from divertor to core with Fe influx

Radiation profile shifts from divertor to core with Fe influx

2D tomographic inversion by minimizing chi-squared with Tikhonov-Phillips regularization

FOIL AND

APERTURE

ASSEMBLY

Imaging Bolometer for ITER: Installation

• Use endoscope/labyrinth similar to current IR thermography design by replacing final mirror with foil and aperture assembly

• Reflective optics near plasma, minimum 2 mirrors

• Refractive optics and IR camera beyond labyrinth for neutron shielding

JT-60U IRVB telescope Upgrade: Improving diagnostic capability

Improvement in bolometer sensitivity:

- IR camera upgrade (25 x sensitivity)
- 3.6 m telescope 42 times optical throughput ->
 - 2.5 x temperature sensitivity
- Improved shielding may decrease noise by 10 x
 - 1.8 x temperature sensitivity
- Total sensitivity increase up to 110 x Improvement in diagnostic capability:
- 12 x 16 pixels -> 24 x 80 pixels
 - divertor resolution 15 cm -> 3 cm (same as resistive bolometers)

see I. Miroshnikov, Poster P6-11, this conference

Conclusions

• IRVB can operate in a fusion reactor environment

• A single imaging bolometer with a semi-tangential view can provide poloidal radiation profile through computed tomography

- Design similar to that for first wall thermography can be used for IRVB installation
- Single IRVB with tangential view can provide nearly the same poloidal profile information as equivalent number of resistive bolometer channels
- New double layer foil promises 3 10 times increase in sensitivity **Future Work**
- 2-D tomography of JT-60U radiation with and without resistive bolometers
- \bullet Replace JT-60U 2.5 μm Au foil with 5 μm Ta (stronger and lower neutron x-section)
- Upgrade JT-60U IR camera (IRVB 10x faster or 25 x sensitivity or 10 x # of pixels)
- Upgrade JT-60U IR optics (ITER relevant, up to 4.5 x sensitivity)
- Improve 4 IRVBs on LHD with IR optics and camera upgrades
- 3-D tomography on LHD
- Design IRVBs for KSTAR, JT-60SA and ITER