
Tomographic reconstruction of internal 
instability in a field-reversed configuration

T. Kiguchi, T. Asai, N. Yamamoto, S. Hiromori, T. Okano, T. Takahashi,
T. Takahashi1), Y. Nogi and S. Inagaki2)

College of science and technology, Nihon University, Tokyo, Japan
1) Faculty of Engineering, Gunma University, Kiryu, Japan

2) National Institute for Fusion Science, Toki, Japan



Introduction

Toroidal mode deformation of the plasma cross section, especially n=2 mode,  is well known 
as a factor which  limits the confinement and destroy the configuration of FRC plasma.
In this report,  the time evolutions of the each toroidal mode deformation are investigated by 
an optical measur-ement (azimuthal array and Computer tomography).
In the past experiment with tomographic reconstruction technique, time evolution of the 
internal structure of FRC has been investigated. These results indicate that the FRC plasma 
has an internal deformation, which has different phase from the deformation of separatrix 
surface. These two different toroidal deformation are difficult to be observed by spatially 
integrated methods, for example, interferometer, end-on camera and so on. 
Therefore, in this work, detailed features of this internal behavior have been investigated by 
a newly improved tomographic reconstruction method.
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The FRC plasmas were generated on the NUCTE -III device . The central part of the theta pinch 
coil is 0.9 m in length and 0.34 m in inner diameter. A passive mirror coil of axial length 0.3 m 
and 0.3m inner diameter is mounted at each end. These coils provide an on-axis vacuum mirror 
ratio of 1.23. The theta pinch coil is connected with a 5 kV, 1.92 mF of capacitor bank and a 32 
kV, 67.5 μF fast capacitor bank. The transparent synthetic silica tube, 2 m in length and 0.256m 
in diameter, is employed as a discharge chamber. 



Operation of NUCTE III

  Typical time histories of operation waves are shown in figure.  In this device, FRCs are 
formed by a typical field-reversed theta-pinch method with z-discharge preheating. 
   In the standard operation case, the main reversed field is provided at the peak of the 
bias field. 
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Typical Plasma Parameters

Plasma parameter - Standard operation
Filling pressure 10 [mTorr]
Bias field 0.032 [T]
Confinement field 0.50 [T]
Separatrix radius 0.060 [m]
Separatrix length 0.8 [m]
Electron density 2.5 [x10  /m ]
Total temperature 270 [eV]
Particle confinement time 80 [μs]

 The diagnostics for measuring typical 
plasma parameters consist of a helium-
neon interferometer to measure line-
integrated electron density and a flux 
loop with a set of magnetic probes to 
determine an axial profile of separatrix 
radius rs(z) using the excluded flux 
method. Here, average electron density 
is estimated as ∫ ndl/2rs. 



Bremsstrahlung

where Zeff is effective charge number, Te: electron temperature, c: velocity of light, 
λ: wavelength, h: Planck’s constant and g s is the Gaunt factor. For these 
experimental conditions, the exponential term can be approximated as unity; 
therefore the intensity I(λ) becomes 

I(λ)dλ =∝ n2
eZeffT 1/2

e
c

λ2
exp

(
− hc

λTe

)
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  In this set of experiments, the wavelength was selected by a band-pass inter-ference 
filter with a central wavelength of 550 nm and bandwidth of 10 nm to avoid 
impurities and deuterium line spectra. Therefore, only bremsstrahlung (and possibly 
negligible recombination radiation) is detected by the PMTs. The wavelength 
dependence of bremsstrahlung can be written as 
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Computer Tomography

  CT(Computer tomography) is the reconstruction task that estimates a  two or 
three dimensional image or profile of the objection from a lot of the projections 
of the objection at various directions. 
  If the objection is time-stationary like a human body, all the projection of the 
objection can be obtained by a scanning the detector system. 
  But When the objection changes with time and without the good reproducibility 
like plasma diagnostic, many detectors must be fixed around the objection to 
obtained the time resolved projections.
  In our experiments, arrengeble and flexible optical diagnostic system which 
consists of multichannel detectors has been developed to observed the time 
history of the toroidal cross section of the FRC plasma.



CT (ART method)

  In ART method, the region of reconstruction is 
divided into the small cell. ε(r,θ) is represented 
as E(k) (k=1,....km). km is the number of the cell

  fi(k) is weight function which represents the 
length across the cell by the optical axis. 

  ART method can reconstruct without an 
assumption of a symmetry of an observed 
plasma. The collimator observes the line 
integrated light intensity along its optical axis. 
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Computer Tomography (ART)

E is solved by the iterative method

Solution of  E is obtained by the least square solution   
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Collimators Alignment 
(Azimuthal Array)
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Observation area
The spatial resolution of the collimator 
may approximate with φ 6mm And the 
divergence of the light is roughly  
0.0025rad.
  In the azimuthal holder shown in 
Figure, all collimators aim to the center 
of device and arrange to the azumuthal 
direction at every 5.5°. 



Collimators Alignment (CT)

  The thirty-five collimators fixed to a 
holder shown in figure are arranged at 
z=5.5cm. This holder is consisted of five 
fan arrays. Relative fan angles are 41o, 
97o, 153o, 215o and 271o and seven 
collimators are installed on each fan 
from -9.6o to 9.6o with the same interval 
angle.
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p-θ diagram of the collimator position

 This figure indicates p-θ diagram of the collimator 
position for CT, where p is a distance of a sight line 
of the collimator from the center of device and θ is 
an angle between the sight line and x axis. Red 
markers are actual positions. Blue markers are 
(actual θ) + 180° positions. There are measuring 
line-integrated intensity, so it observe even a blue 
position at the same time. By sampling theorem, 
the decidable maximum deformation toroidal mode 
number that can be observed in this system is n = 
4, because the measured data set has ten sets of 
information relating to the azimuthal direction.
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Conclusion of CT

Figure (a) shows time evolution of line integrated 
electron density  ∫ndl along the y axis. 
In the latter phase of equilibrium, an FRC has a well-
known global rotational instability with toroidal mode 
number   n = 2. It has been believed that elliptical 
deformation of the FRC allows interaction between the 
wall and the plasma, which terminates this configuration.
  However, these experiments revealed the FRC to deform 
into a dumbbell-like structure before the edge hits the 
chamber wall, leading to the disruption phase. In addition, 
an internal shift toroidal mode number  n = 1 mode was 
observed in the equilibrium phase, followed by growth of 
n = 2 rotational  instability.  
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Mode analysis
Toroidal mode of FRC plasma is defined as fallow, aaa
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Method of deciding a boundary

Figure (a) shows amplitude of CT image 
along the radial axis (red line of figure (b)). 
(b) and (c) draw tomographic profile of toroidal 
cross section at 15 and 25µs, respectively. White 
dashed line in the drawing indicates separatrix 
estimated by excluded flux method. Blue dashed 
line in the drawing is the boundary which 
defined by connecting each radial peak. 
 Figure (c), An internal shift toroidal mode 
number  n = 1 mode was observed in the 
equilibrium phase.  
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Mode analysis (Amplitude)
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  (a) shows time evolution of toroidal mode 
amplitude calculated from the line integrated 
emission intensity observed by azimuthally 
arranged optical collimators In this 
observation, only even number of toroidal 
mode can be estimated. This analysis shows 
no growth of mode amplitude in the toroidal 
mode number greater than 4.
  (b) whole reconstructed area of tomographic 
profile. Curves of mode number n = 0 and 2 
has similarity shape with the results from line 
integrated measurement (b). This also 
indicates confidence of the reconstruction. 



Mode analysis (Amplitude)
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Time evolution of toroidal mode amplitude 
analyzed from  (c) inside the separatrix, (d) 
inside the boundary which defined by 
connecting each radial peak.
Even in the quiescent phase of time history 
of  ∫ndl, these tomographic profiles show 
deformation of cross section. At 15µs , 
irregularity of the emissivity on the θ 
direction is small and illustrates good 
equilibrium profile. However (c), (d) shows 
deformed emissive profile especially inside 
the separatrix even in the flat ∫ndl phase.



Summary
The detailed aspect of internal structure is veiled in the 

usual line integrated diagnostics in a FRC and tomographic 
technique is useful in confirming the diagnosis of internal 
toroidal mode deformation as well as that of external mode. 

Tomographic profile of presented method has detected 
toroidal mode deformation especially inside the separatrix. 
However, it is difficult to investigate time evolution of 
internal structure, especially around the magnetic axis (a null 
point), with the spatial resolution of presented system. Thus, 
for more detailed investigation, improvement of spatial 
resolution by adding measurement points or improvement 
reconstruction technique for example optimization of the 
weight of divided cells are necessary as far as an information 
theory permits it.


