1. Basic ideas and hardware

- Phase contrast imaging (PCI) is a type of imaging interferometry with an "internal" reference beam, which is undiffracted (zero order) beam.
- Phase plate makes fringe visibility maximal by setting phase delay between interfering beams 0 or π.
- Resultant signal at the image plane is \(I_\text{PCI} = 1 + 2 \sum (1 \pm 2) \), where \(1 \pm 2 \) is phase shift due to plasma density fluctuations \(\Delta n \).
- As all interference PCI line is integrated is for homogeneous plasma \(\rho = 0 \) following equation holds:

\[\Delta n_{\text{PCI}} = \Delta n_{\text{norm}} \cdot \Delta \rho / \rho \]

where \(\Delta n_{\text{norm}}/\rho \) - fluctuations scale, integration length or resolution length.
- Longitudinal correlation length \(\lambda_{\text{ PCI}} \) is a major uncertainty in determination of \(\Delta n \). Improvements require decreasing \(\lambda_{\text{ PCI}}/\rho \), and additional estimation of \(\lambda_{\text{ PCI}} \) in different geometry.

- Waves from different regions along the line of view can be distinguished by their traveling directions and this can make \(\lambda_{\text{ PCI}}/\rho \) smaller, where \(\rho \) is the plasma size along the viewing line.
- The basis for this is:
 - 1-D elementary structure of low frequency density fluctuations \(\Delta n_{\text{ PCI}} \approx k \Delta \rho \) as it follows from theory and experiment.
 - Large (~50%) variation of \(\lambda_{\text{ PCI}}/\rho \) for beam traveling through the LHD plasma from bottom to top.

2. Capabilities

- Provides momentary profiles of plasma density microfluctuations data \(\Delta \rho(k) \), \(\Delta n(k, \nu) \) through the entire plasma diameter with \(\Delta n \sim 1 \times 10^{-2} \) cm. This unique feature of 2-D phase contrast enables studying global behavior of plasma microturbulence.
- Fast temporal sampling (up to several MHz) enables observation of fast phenomena in behavior of density fluctuations.
- In zoom mode large \(k \) (up to \(30 \mathrm{cm}^{-1} \)) fluctuations profiles can be studied in limited region (0.2-0.3D) either in the plasma core or at edges. Position of the region can be varied through the whole plasma diameter.
- PCI technique advantages:
 - Uses small ports, relative to MW or FIR scattering (scattering angles less that 10°).
 - Works well at medium and high plasma densities and tolerant to density gradients.
 - Relevant to method of plasma heating.
 - Sensitive to broad range of fluctuations wave numbers.

Dynamics of plasma density fluctuations spatial profiles

- Contribution of leakage through the spatial filter of signal produced by low \(k \) fluctuations can be significant especially in zoom mode because of larger fluctuation power \(\Delta n_{\text{PCI}} \approx k \Delta \rho \) and lower spatial resolution \(\lambda_{\text{PCI}}/\rho \). The leakage increases also by 50% due to diffraction on aperture \(\beta_D \). However most of leaked signal concentrates near the low edge of filtered spectrum \(\Delta k \), relencing the leakage problem. Calculations with GLAD.

3. Limitations

- Limitation to region in k-space that can be observed.
 - Low \(k \) limits:
 - PCI theory principle is invalid when \(k < k_{\text{max}} \) (D-diameter of laser beam in plasma). In the case the image of the detector array in plasma \(\Delta n_{\text{max}} \) is small \(k_{\text{max}} \approx 0.5 \mathrm{D} \), fluctuations with \(k > k_{\text{max}} \approx 0.5 \mathrm{D} \) can be detected without localization due to poor angular resolution.
 - High \(k \) limits:
 - Angular limit sets maximum \(k \) without aliasing \(k_{\text{max}} \Delta \rho \), \(k_{\text{max}} \approx N \delta \rho \), where \(N \delta \rho \) is number of detectors in the array. The dynamic range of spatially resolved fluctuations \(\Delta n \approx 0.5 \mathrm{D} \) is limited.
-钎Phase grating approach used in signal interpretations holds for \(k_{\text{min}} \lesssim 2 \pi / \lambda \) (Klein & Cook, 1983). However phase grating image keeps its shape within a larger distance than \(\lambda_{\text{PCI}}/\rho \) of which Talbot length

\[L_{\text{Talbot}} = \frac{D^2}{\lambda} \]

is. In case \(L_{\text{Talbot}} \ll \lambda_{\text{PCI}}/\rho \) angular spatial filter has to be used to select plasma region for observation. For example for \(k=30 \mathrm{cm}^{-1} \) the length along the viewing line of plasma region to observe is \(L_{\text{Talbot}} = 10 \mathrm{D} \).

> 0.5

More weak restriction is maximum scattering angle determined by port size. Here \(k_{\text{min}} \approx 0.1 \mathrm{D}^{-1} \), which defines \(\lambda_{\text{PCI}}/\rho \approx 0.1 \mathrm{D}^{-1} \).

< 0.1

Low \(k \) leakage can distort large \(k \) region. Typically high-pass time frequency filter is employed for large \(k \) selection in addition to selection by spatial filter.

Detection of ETG scale turbulence