Design of Bolometer diagnostics for the KSTAR

Dongcheol Seo¹ and B.J. Peterson²

¹National Fusion Research Center, Daejeon 305-806, Korea ²National Institute for Fusion Science, Toki-shi 509-5292, Japan

16th International Toki Conference

Advanced Imaging and Plasma Diagnostics Ceratopia Toki, Gifu, JAPAN December 5-8, 2006

Abstract

K**S**TAR.

A 12 channel resistive bolometer array and an infrared imaging video bolometer (IRVB) have been designed for the Korean Superconducting Tokamak Advanced Research (KSTAR). In the 2nd campaign (2009), the 12 channel resistive bolometer array will be installed at the mid-plane tangential port, with the array viewing horizontally, and an Abel inversion will be carried out for a major radial profile of the radiation emissivity of the circular cross-section plasma. In the 3rd campaign (2010), an IRVB will be installed at the port of the resistive bolometers and the results of the resistive bolometer and the IRVB will be compared. In the 4th campaign (2011), the 12 channel resistive bolometer array will be moved to the divertor. The calibration constants of the 12 channel resistive bolometer such as the sensitivity, K, and the cooling time, τ_c , have been obtained by the In situ calibration. This work is supported by the Korea Ministry of Science and Technology under the KSTAR Project and the Korea-Japan Fusion Collaboration Program.

KSTAR Machine Parameters

Major Radius,	<i>R₀</i> =1.8 m
Minor Radius,	<i>a</i> = 0.5 m
Plasma Current,	<i>I_P</i> = 2.0 MA
Elongation,	<i>κ</i> = 2.0
Triangularity,	$\delta = 0.8$
Toroidal Field,	<i>B_{τ0}</i> = 3.5 Tesla
Pulse Length	300 sec

List of KSTAR diagnostic systems

Revised : 03 March 2006

Diagnostic Set	Basic(2007)	Baseline I(2008)	Baseline II(2009)	Baseline III(2010)	Baseline IV(2011)
Control and Machine	Rogowski Coil Flux/Voltage Loop Magnetic Field Probe Diamagnetic Loop mm-wave Interferometer (single-ch.) Survey Visible/H-alpha TV Inspection Illuminator *Torus Ion Gauge *Glow Discharge Probe	Saddle/Locked-Mode Coil Vessel Structure Current Monitor Hard X-ray Detector Mirnov Coil (In-board) Survey Visible/H-alpha TV *Residual Gas Analyzer	Mirnov Coil (PFC) Vertical FIR Interferometer/Polarimeter Survey IR TV	Charge Exchange Recombination Spectroscopy (CER) Motional Stark Effect (MSE)	Modified MSE (Er, q)
Core Plasma	Visible Survey Spectrometer H-alpha Monitor ECE Heterodyne Radiometer	Soft X-ray Array X-ray Pulse Height Analyzer Visible Brems. Array X-ray Crystal Spectrometer Reflectometer	Thomson Scattering Bolometer Array X-ray Pinhole Camera Multi-chord Visible Spectrometer ECE Imaging (ECEI) System Epithermal Neutron Detector Microwave Imaging Reflectometer (MIR)	Poloidal Rotation CER BES Soft X-ray Spectrometer Visible Filterscope Escaping Fast-ion Detector ECE Grating Polychromator Tangential FIR Interferometer/Polarimeter	Multi-ch. Neutron Collimator Neutron Fluctuation Detector CX-NPA Diagnostic Neutral Beam
Divertor and Edge		Reciprocating (Movable) Langmuir Probe Fixed Langmuir Probe Array (Inboard Limiter)	Fixed Langmuir Probe Array (Divertor) Divertor IR TV Divertor Visible/H-alpha TV Bolometer Array VUV Survey Spectrometer *Fast Neutral Pressure Gauge *Divertor Thermocouple	Divertor Bolometer Array Divertor VUV Survey Spectrometer Divertor Microwave Interferometer Edge Thomson Scattering Edge Reflectometer	Electron Cyclotron Absorption (ECA) Reciprocating Langmuir Probe (Multi- head) Impurity Pellet Injector Divertor Thomson A

KSTAR Diagnostics layout

Current Plan for Bolometer System for KSTAR

- Objective To diagnose radiation from core and divertor regions by combining resistive and imaging bolometers
- **Current Proposal**
- 1st camp. ('08) no bolometer
- 2nd camp. ('09) 12 ch resistive bolometer
 - Tangentially viewing array fanning out major radially
 - Assuming axisymmetry, Abel inversion for radial profile of circular cross-section main plasma (as in C-mod)
- 3rd camp. ('10) Resistive and imaging bolometers
 - Add tangentially viewing imaging bolometer
 - Assuming axisymmetry, perform 2-D tomography of main plasma using ~140 imaging bolometer
 - the results of the resistive bolometer and the IRVB will be compared
- 4th camp. ('11) Resistive bolometer for divertor
 - 12 channel resistive bolometer will be removed to the divertor.

KSTAR Bolometer Systems

ITC16 P5-20-6

Dec. 6, 2006

Resistive bolometer system-concept

FOV for resistive bolometer on KSTAR

- FOV angle : 8.63°
- spatial resolution : 4.5 cm

Estimation of S/N for resistive bolometer

- P_{total} = 15MW, assume f_{rad} = 100%
- V_{plasma} = 8.9 m³
- $V_s = A_s \cdot l_s = 836 \text{ cm}^3$
- *l*_{det} = 368 cm

$$S = \frac{P_{total}}{V_{plasma}} \frac{V_s}{A_{det}} \frac{A_{det}}{4\pi l_{det}^2}$$

- $S = 828 \ \mu W/cm^2$
- Noise \Rightarrow 20 μ W/cm²
- S/N ≒ 41.4

IR imaging Video Bolometer (IRVB)-concept

[1] B.J. Peterson, Rev. Sci. Instrum. 70 (2000) 3696. [2] B.J. Peterson et al., Rev. Sci. Instrum. 72 (2001) 923.

Dec. 6, 2006

ITC16 P5-20-10

FOV for IRVB on KSTAR

ITC16 P5-20-11

IR Camera Specifications

	Resolution	Full frame rate	NETD	Spectral range	Detector type	Size(LxWxH)
SC6000	640x512	125 Hz	<25 mK	3 - 5 <i>µ</i> m	Indium Antimonide (InSb)	206x143x159 mm
SC4000	320x256	420 Hz	<25 mK	3 - 5 <i>µ</i> m	Indium Antimonide (InSb)	206x143x159 mm
A40	320x240	60 Hz	<80 mK	7.5 - 13 μm	Focal Plane Array(FPA), uncooled microbolometer	207x92x109 mm
SC500	320x240	60 Hz	<70 mK	7.5 - 13 μm	Focal Plane Array(FPA), uncooled microbolometer	212x121x127mm
Omega	160x120	30 Hz	<85 mK	7.5 - 13.5 <i>µ</i> m	Uncooled microbolometer	49x35x37 mm
Phoenix	320x256	345 Hz	<25 mK	1.5 - 5 <i>μ</i> m	Indium Antimonide (InSb)	176x113x133 mm

Dec. 6, 2006

Foil Material Properties

	Tensile (M soft	strength Pa) Hard	σ _{neutron} (Barns)	ρ (g/cm ³) @20C	C _p (J/K Kg) @25C	k (W/m K) @0-100C	$\frac{\kappa}{(\mathrm{cm}^2/\mathrm{S})}$	κ/k (cm ³ K/J)	Tm (C)	Wf (eV)	L _{atten} (µm) @9KeV	t _{min} (µm)
Hf	445	745	103	13.1	146	23.0	0.12	0.52	2227	3.9	6.5	9
Та	310-485 (397.5)	760	22	16.6	140	57.5	0.25	0.43	2996	4.1	5.1	2
Au	130	220	98.8	19.30	129	318	1.28	0.40	1064	4.8	3.4	2.5
W	550-620 (585)	1920	18.5	19.3	133	173	0.67	0.39	3410	4.55	4.2	10
Pt	125-150 (137.5)	200-300	9.0	21.45	133	71.6	0.25	0.35	1772	5.3	3.2	2

www.goodfellow.com

17th PSI, P1-60 B.J.Peterson, S.Konoshima, H.Parchamy, M. Kaneko, T. Omori, D.C. Seo, N.Ashikawa, A. Sukegawa

Noise Equivalent Power

$$\eta_{IRVB} = \frac{\sqrt{10}kt_{f}\sigma_{IR}}{\sqrt{mN}}\sqrt{1 + \frac{l^{4}}{5\kappa^{2}m^{2}\Delta t_{IR}^{2}} + \frac{4l^{4}\varepsilon^{2}\sigma_{S-B}^{2}T^{6}}{5k^{2}t_{f}^{2}}}$$

k : thermal conductivity of foil t_f : thickness of foil σ_{IR} : sensitivity of IR camera m : number of frames averaged ($\Delta t = m\Delta t_{IR}$) N : number of IR pixels / bolo pixel l^2 : bolometer pixel area κ : thermal diffusivity of foil Δt_{IR} : time resolution of the IR camera Δt : time resolution for the diagnostic ε : black body emissivity of the foil σ_{S-R} : Stefan-Boltzmann constant

for Au foil(90x72), $\Delta t = 1/30$ s, $t_f = 5\mu m$

Dec. 6, 2006

ITC16 P5-20-14

K§TAR.

Estimation of S/N for IRVB

- P_{total} = 15MW, assume f_{rad} = 100%
- V_{plasma} = 15.8 m³ (D-shaped plasma)
- Ω , V_s depend on l^2

ITC16 P5-20-15

Magnetic and neutron shielding boxes

• 2 times larger than results in LHD and JFT-2M(500-600G)

In JT-60U case

- Magnetic shielding (soft iron): thickness of 24 mm
- Neutron shielding (polyethylene): thickness of 90 mm @ 10^{16} n/s

*H.Parchamy et al, Rev.Sci.Instrum. 77, 10E515(2006)

Dec. 6, 2006

```
ITC16 P5-20-16
```

Neutron shielding box

• If we assume D-D operation with 2 MA of plasma current and 20 MW of heating power in KSTAR advanced operation mode, total Neutron Flux will be

5 x 10^{15} #/sec (from JET Physicist, Dr. R Barnsley).

- $(2\sim5) \ge 10^{15}$ #/sec (from RF Kurchatov Hard-Xray Report)
- Then, the optical components at ~ 300 cm from center,

Flux =
$$\frac{5 \times 10^{15}}{4\pi r^2} = \frac{5 \times 10^{15}}{4 \times 3.14 \times 300^2} = 4.4 \times 10^9 \ \#/\text{cm}^2 \text{ sec}$$

- If we assume that discharge pulse be ~ 300 s, day cycles be ~ 20 shots, operation days per one campaign be ~ 60 days, and campaigns for KSTAR Advanced Operation be ~5,
- Then, Total Neutron Flux / Unit Area

 $\sim 4.4 \times 10^9 \ \#/cm^2 \sec \times 300 \sec \times 20 \times 60 \times 5$

 $\sim 7.9 \times 10^{15} \ \#/cm^2 \ ==$ Total Neutron Influence

KSTAR.

In-situ laser calibration setup of the bolometer

Dec. 6, 2006

ITC16 P5-20-18

HeNe Laser beam profile

		-		K≦TA₽
Clip[a]	13.5%	Delta = 1030.8 um Pixel I = 41990 (64.1%)	Average	of 20 View = -152 : Tilt = -26
Clip[b]	50.0%			
No board/can	nera found			
2W_Major	717.0 um			
2W_Minor	687.0 um			
2W_Mean	704.4 um			
Eff. diam.	698.1 um			
Ellipticity	0.96			Relative Power: 0.00 Full Range = 2
Orientation	23.0 deg.			
Crosshair	23.0 deg.			Trigger input is off. [R-Click
Xc	1030.8 um			
Yc	-11.3 um			Imager Gain = 1.0
				Exposure time = 2.000 ms (Auto) R-Click
•-•		717.0 um	2Wva @ 13.5 %	687.0 um
		489.7 um	2Wvb @ 50.0 %	492.6 um
	Ĩ	Peak = 64.1 %, B = 0.5 %	Scale = 600.0 um/div	Peak = 64.2 %, B = 0.5 %

Measured by WinCamD Beam diameter can be controlled by beam expender Beam diameter : 0.7 mm

Dec. 6, 2006

ITC16 P5-20-19

Calibration

12 channel resistive bolometer array

Detector

- Gold foil resistive bolometer
- Blackened with Graphite
- 12 channels will be installed in KSTAR
- Detection limit 10⁻⁶ W/cm²
- Thermal drift dU/dT < 10⁻⁴ V/K

Calibration

Calibrated with chopped HeNe laser of power, P_{rad} , and bolometer signal voltage, V_b , to determine sensitivity, *K*, and cooling time, τ_c ,

from

$$P_{rad} = \frac{1}{K} \left(\tau_c \, \frac{\partial V_b}{\partial t} + V_b \right)$$

Dec. 6, 2006

Results of calibration

IPT 52	ch1	ch2	ch3	ch4	
τ[ms]	160.70	159.23	154.82	152.06	
Senstivity [V/W]	9.76	10.33	10.28	9.93	
IPT 53	ch1	ch2	ch3	ch4	
τ[ms]	148.19	151.27	149.34	150.37	
Senstivity [V/W]	10.01	9.64	9.64	9.55	
IPT 54	ch1	ch2	ch3	ch4	
τ[ms]	149.43	153.28	157.64	157.85	
Senstivity [V/W] 10.0		10.20	10.44	10.36	

Cooling time : 153.68 ms Sensitivity : 10.02 V/W

Summary

- Design of Resistive Bolometer System
 - Located L-port, angular FOV is 8.63°, spatial resolution is 4.5 cm, spot size is 12x34 mm²
 - Estimated S/N is 41.4
- Delivered resistive bolometer system in 2006/02
 - amplifiers, control system electronics, sensor heads (3), in-vessel cables(2.5m), ex-vessel cables 40m, vacuum feedthroughs (3-ICF70mm)
- Design IR Imaging Video Bolometer
 - Foil material is Ta, size is 72x90 mm² (512x640)
 - Angular FOV is about 48°
 - If number of bolometer pixel is smaller than 2000, S/N get over 200.
 - Near the port surface, magnetic field is about 0.1 Tesla in KSTAR
 - D-D operation with 2 MA of plasma current and 20 MW of heating power in KSTAR advanced operation mode, total Neutron Flux will be 5 x 10¹⁵ #/sec
- Calibration of resistive bolometer
 - Cooling time is 153.68 ms
 - Sensitivity is 10.02 V/W

KSTAR.

Future work

- Fabrication of resistive bolometer system.
- Detailed design for IRVB system.
- Conceptual design for divertor bolometer system.

K§TAR.