

<u>H.Tojo</u>, A.Ejiri, Y.Takase, Y.Torii, T.Osako, M.Sasaki⁽¹⁾, T.Masuda, Y.Shimada N.Sumitomo⁽¹⁾, J.Tsujimura, H.Nuga⁽¹⁾, S.Kainaga⁽¹⁾, J.Sugiyama Graduate School of Frontier Sciences, The University of Tokyo Kashiwa 277-8561, Japan (1)Graduate School of Science, The University of Tokyo Tokyo,113-0033,Japan

Outline

- TST-2 device
- MHD events (Reconnection Event) and objective of this study
- Measurements
 - -SX detectors and evaluation of curved filters
- Experimental results
 - -Evaluation of SX profile
 - Mode Analysis by Singular Value Decomposition
 - Correlation with SX gradient
 - Ion temperature increase
- Summary

Tokyo Spherical Tokamak-2(TST-2)

- Major Radius $R_0 \sim 0.38$ m
- Minor Radius a ~0.25 m
- Aspect ratio R/a ~1.5

- Toroidal field BT ~0.3T
- Electron density ne $\sim 10^{19}/\text{m}^3$
- Plasma current Ip ~ 0.1 MA

Simulation results of Reconnection Event

Objective of this study

- Comparison with MHD simulation
 - To understand flow of heat and particles in plasma (slow behavior) by SX radiation profile
 - To determine the mode number in the initial state by...
 - SX radiation profile (internal) and magnetic signals (external)
 - To decide which modes grows by...
 - Special technique to know the each modes of time evolution and its spatial distribution. (Singular Value Decomposition)
 - To get supportable evidence of magnetic reconnection by...
 - Determination of ion temperature (T_i) by spectroscopy
 - Identification of non-linear coupling (late state)
- Experimental understanding of the source.
 - To determine whether pressure gradient causes RE to know the difference of gradient on SX profile in RE and non-RE discharges
 - n_e profile
 - Current profile(q₀/q_a)

Tangential SX camera

Semi-conductor detector (P-I-N type)
Pin-hole camera with 20ch
Frequency response < 50kHz
Curved filter
Polypropylene(P.P.):7 µ m
Beryllium(Be):7 µ m

From visible to soft X-ray(~10keV) without filer

Horizontal SX camera

Disadvantage of flat filter

Curved filter

Typical discharges with RE

Distribution of time derivative

Mode Analysis by Singular Value Decomposition

Considering experimental data...

Not only SX signals
but also magnetic coils (n-coil) are used.
➤ To know the correlation between toroidal mode and fluctuation of SX

Results of SVD analysis with tangential chords and n-coils

SVD analysis with horizontal chords and m-coils

•Configuration of magnetic coils

Using the P.P. filter for SX (m-coils)
 taking fluctuation components by using frequency filter (5-40kHz)

SVD analysis with horizontal chords and m-coils

 Growth of SX mode were observed
 Signal of m-coils strongly depend on the position of plasma (It's difficult to determine poloidal mode number)

Correlation between SX gradient and ΔI_p

The resulting ion heating during the event

A_

Ion temperature increase during the events

support release of magnetic energy

Correlation between T_i (CⅢ and OV) and I_p ≻positively correlated

 $\geq \Delta T_i/T_i \sim 2.4$ at the maximum (OV)

 \gg w/o RE, T_i~40eV(OV), 20eV(CIII)

≻The ion heating are also observed

in other STs

(MAST [1] TST-2 [2] HIT- II [3])

P. Helander et al., Phys. Rev. Lett 89, 235002 (2002).
 A. Ejiri, et al., Nuclear Fusion 43, 547 (2003).
 R. G. O'Neill Physics of Plasmas 12, 122506 (2005)

2.5

Summary

- Tangential and horizontal SX cameras
 - Curved filter has a flat sensitivity, while with a flat filter the difference of the detected power for the curved is up to a factor of two larger for edge channels.
- Slow behavior of SX profile shows position of crash was $\rho \sim 0.2$
- The results of SVD analysis is following
 - Using both SX and magnetic coils are effective to understand the correlation between toroidal mode and SX profile.
 - Growth of n=1 and n=2 were observed. (consistent with the MHD simulation)
 - m was difficult to determine because of effect of the plasma position.
 - Horizontal SX camera showed growth of even-mode.
- Steep profile $(dI_{SX}/dr > 0.2)$ is necessary for RE and can be a candidate of driving force of the instability.
- Ion temperature increase ($\Delta T_i/T_i \sim 2.4$ at the maximum (OV)) and its ΔT_i is positively correlated with ΔI_p (magnetic energy)