Development of Advantage X-ray Imaging Crystal Spectrometer Utilizing a Large-area Proportional Count for KSTAR

S. G. Lee, J. G. Bak National Fusion Research Center U. W. Nam Korea Astronomy & Space Science Institute M. K. Moon, J. K. Cheon Korea Atomic Energy Research Institute

> 16th International Toki Conference December 5 - 8, 2006

KSTAR Advanced X-ray Imaging Spectrometer **S**

Due to the astigmatism of a spherical crystal two images, \mathbf{F}_{m} and \mathbf{F}_{s} , of a point source *located on the Rowland circle at the position of the detector* are formed by the meridional and sagittal rays. For a Bragg angle of 45°, \mathbf{F}_{s} is at infinity, so that - if the rays are reversed - a parallel bundle of X-rays emerging from the plasma is focused to a point on the detector. Parallel bundles, which are oblique to the main (horizontal) diffraction plane, are focused to points above or below the horizontal plane.

KSTAR

KSTAR XCS

KSTAR

Horizontal XCS

Maximum viewing vertical cross section : \pm 47 cm Plasma center – crystal distance : 14.6 m Many detail drawings were generated

2d-spacing of 110 quartz crystal : 4.913 Å $\lambda_w = 3.9494$ Å $\theta_w = 53.50^{\circ}$ $\lambda_z = 3.9944$ Å $\theta_z = 54.392^{\circ}$ $\theta_{avg} = 53.946^{\circ}$ $\Delta \theta = \theta_z - \theta_w = 0.892^{\circ}$ Radius of crystal curvature : 5294 mm

Key	Transition	Wavelength (Å)*
w	$1s^{2}S_{a} = 1s2p^{1}P_{1}$	3.9494
x	$1s^{21}S_{0} - 1s2p^{3}P_{1}$	3.9661
Y	1s ² ¹ S ₀ - 1s2p ³ P ₁	3.9696
q	$1s^{2}2s^{2}S_{1/2} = 1s2s2p(^{1}P)^{2}$	P _{3/2} 3.9815
r	$1s^{2}2s^{2}S_{12} = 1s2s2p(^{1}P)^{2}$	P _{1/2} 3.9836
а	$1s^{2}2p^{2}P_{y_{2}} = 1s2p^{2}P_{y_{2}}$	3.9860
k	$1s^{2}2p^{2}P_{12} = 1s2p^{2}D_{32}$	3.9901
j	$1s^22p\ ^2P_{_{3'2}}-1s2p^2\ ^2D_{_{5'2}}$	3.9941
z	$1s^{2}S_{0} = 1s2s^{3}S_{1}$	3.9944

* Theory by Vainshtein and Safranova

Vertical XCS

Vertical viewing cross section : \pm 50 cm Plasma center – crystal distance : 7.0 m

Inside view from crystal

Horizontal XCS Layout

K⁵**TAR** Fabrication Status of Horizontal XCS **(5)**

The measured leak rate of the spectrometer was below 5.0 x 10-10 mbar liter/s, which satisfies the KSTAR vacuum requirement.

Design of 2D detector

Upper cathode - Cu strips spectral resolution on X-axis Anode - wires

Lower cathode – wires spatial resolution on Y-axis

Be window 0.1 mm thick 110 mm by 330 mm

1 atm gas : Xenon 78%

 $C_2H_6 20\%$

CF₄ 2%

KStress analysis – Be window

0.1 mm thick 110 mm by 330 mm Be window

19 ribs 2 mm wide x 5 mm thick, Maximum stress 556 Mpa > 300 Mpa (limit) - not allowed 29 ribs 2 mm wide x 5 mm thick, Maximum stress 239 Mpa < 300 Mpa (limit) - allowed

KSTAR Components of 2D Detector

KSTAR Fabricated 2D Detector

Sensitive area: 100 mm (X-axis) 300 mm (Y-axis) Entrance window : 100 μ m Be foil 29 supporting ribs : 2 mm wide 5 mm thick Gas mixture : Xenon 78% C_2H_6 20% CF_4 2%

Mainly photo-electric effect (low energy X-ray)

~300 ions and electrons produced per 8keV X-ray (Ar, Kr, Xe gases for X-rays)

KSTAR Principle of Position Readout Window Electron avalanche Anode wire Induced charges Cathode strips Delay lines LC

c 茾

c 茾

С 🚔

С

KSTAR Configuration of Data Acquisition

Fabricated Electronics

KSTAR Image Test of 2D Detector

An image test was done by illuminating the whole detector with a Fe55 source.

The nipper image on the detector is clearly shown.

KSTAR Detector Calibration Measurement

Fe55 source is placed on a slit between toolbits above the detector Center channel numbers of slit 1 and 5 are 1405.4 and 716.82, respectively The distance between two slits is 38.1 mmThe conversion factor = 0.0553 mm/channel

Spatial Resolution

- 100 m Ci Fe55 source is placed on a 0.05 mm wide slit above the detector
- For each high voltage value, we accumulated the data from 20 shots
- Each shot was 25 sec long
- FWHM decreased from 1.4 to 0.53 mm when the high voltage was varied from 2950 to 3300 V

KSTAR Improvement of 2D Detector

A new improved segmented-detector Count rate capability is factor of 2 better than before

KSTAR Upgraded Segmented 2D Detector

(a) An inside view of the segmented 2D detector.(b) An outside view of the segmented 2D detector.(c) A layout of the uniformity test of the fabricated segmented 2D detector.

KSTAR Upgraded Interface with New TDC

Count rate capability: 800 kHz

K\$TAR

Uniformity Test

(a) The uniformity of the detector 1.(b) The uniformity of the detector 2.

- The anode wire images of both detectors are clearly shown.
- The shadows in the horizontal direction are caused by the supporting ribs on the Be-window.

KSTAR Image Test of Segmented 2D Detector

256 resolution display -> real image will be much better

KSTAR Spatial Resolution of Segmented 2D Detector

- The spatial resolution of the segmented 2D detector was further studied.
- For this spatial resolution measurement, the Fe-55 x-ray source was placed on a slit between tool bits above the detector as shown in Fig. (a).
- The tool bits consist of four 50 micron wide slits and the separation between the slits is 15 mm.
- Figure (b) shows the obtained peak profiles from each slit on the detector 1.
- The peak profiles are similar to a Gaussian.

KSTAR Spatial Resolution of Segmented 2D Detector

- The measured full width at half maximum (FWHM) of each slit on the detector.
- The FWHM changes from 0.85 mm to 0.45 mm when the high voltage is varied.
- The best spatial resolution of the detector is approximately 0.45 mm.
- The measured spatial resolution of detector 2 is very similar to that of detector 1.

KSTAR Summary and Future Works

- The engineering design for KSTAR imaging XCS has been finished.
- Horizontal XCS for the KSTAR has been fabricated.
- It is expected that the imaging XCS will provide many contributions to KSTAR experiments.
- A 2D detector and associated electronics were fabricated and tested.
- An upgraded new segmented 2D detector was fabricated and tested.
- The performance of the segmented detector and electronics will be improved.