

Investigation of a novel X-ray tube for the calibration of the X-ray crystal spectrometer in the KSTAR machine (P6-37)

J. G. Bak, S.G. Lee National Fusion Research Center, Taejeon, KOREA

16th International Toki Conference Advanced Imaging and Plasma Diagnostics 5 – 8 December 2006, Toki, Japan

KSTAR

Abstract

A novel x-ray tube with a line filament has been developed for the *in-situ* calibration of the x-ray crystal spectrometer (XCS) in the KSTAR machine. The characteristics of the x-ray tube are investigated from the xray images obtained by using a pinhole and a CCD detector. It is found that the image has the width of about 0.1 mm, which is much improved as compared with the previous experimental results. In addition, there is a uniform region around the center of the image within its full length of 13.5 mm. This work may lead to the development of a novel x-ray tube with a line focus, which is required for the calibration of the XCS. Experimental results from the investigation of the x-ray tube are presented and the technical issues in a design of the *in-situ* calibration system using the x-ray tube for the KSTAR XCS are discussed.

* Work supported by the Korea Research Council of Fundamental Science & Technology and the KSTAR project.

K*j***TAR** Fabricated X-ray tube and spectrum

Various types of anode

KSTAR

20° slanted flat anode

20° slanted focusing anode

100.22 2-M4×0.7P 15 15 15 15 45. 06.5,DP:69.54 49.3 9.7

4

KSTAR Measured intensity vs. anode angle

A 20° anode emits the highest x-ray intensity The emitted intensity of the x-ray is strong as the filament current increases The low x-ray energies are strongly attenuated in the air

KSTAR Trace observed on the anode after experiment

- The axis of the electron trace image on the anode is perpendicular to the direction of the filament.
- The line on the anode is due to the energetic electron beams from the filament and x-rays are emitted from the line.

KTAR X-ray pinhole camera for investigating x-ray images

EEV CCD chip 1242 pixels by 1152 pixels Pixels size : 22.5 μm by 22.5 μm Dimension : 27.9 mm by 25.9 mm

- A pinhole was installed half way between the x-ray source and CCD camera
- Various types of anode were used
- Polarity of the filament was changed to see the effect of the polarity
 - space charge effect

KSTAR

X-ray image from a pinhole camera

KSTAR Intensity distribution in previous measurements

Intensity along the xaxis obtained by binning on the y-axis

Intensity along the yaxis obtained by binning on the x-axis

KSTAR

X-ray image from a pinhole camera

- The expected total length of the image is d· tan (α) = 14.6 mm, where d = 40 mm is the diameter of the anode and $\alpha = 20^{\circ}$ is the angle of inclination of the anode surface.
- The measured length of the image is 13.5 mm

KSTAR Detail view of the image for 45° planned anode

Filament polarity : normal

Filament polarity : reversed

Expected total height of the anode image is $d \cdot \tan(\alpha) = 40$ mm. The height of the CCD chip is 25. 9 mm so that a full image of the anode from the pinhole camera can not be shown – upper half image is shown

KSTAR Horizontal X-ray Crystal Spectrometer

✤ 10 cm by 30 cm 2D detector

Spectral parameters for heliumlike argon Ar XVII :

Resonance line λw :3.9494 Å Forbidden line λz : 3.9944 Å

Dimension of spectrometer
Bragg angle θw = 53.594°
Crystal to plasma center distance : 12842 mm
Length of crystal detector arm : 4280 mm
Demagnification : 3
Sagittal focal length : 13931 mm

KSTAR Technical issues for calibration of the XCS

> 2D detector, the crystal and the x-ray source should be positioned on the Rowland circle in order to expose the best focused x-rays on the detector.

➤ To get the line focused x-ray source, a slit with a gap of about 50 μ m is positioned in front of the x-ray tube, which experienced in the position calibration using a 55Fe source in a laboratory. → to investigate the spatial resolution in the detector required for the image measurement.

> Additional optic system for scanning x-rays is needed for the exposure of the line focused x-rays on the full area of the detector \rightarrow for both of the position calibration and the examination of the uniformity in the detector.

K§TAR

 \succ It was found that the x-ray image was a slightly curved line perpendicular to the filament, which is similar with the previous measurements.

 \succ The orientation of the anode image changed with the polarity of magnetic field due to the filament current, which is similar with the previous measurements

The x-ray image from the x-ray tube had a uniform region near the center region and the width of the image was reduced up to about 1.0 mm, which was much improved as compared with the previous experimental results.

 \succ From experimental results, it was found that the width and the length of the image depended upon the thermionic emission current distribution along the filament and the diameter of the anode, respectively.

The further study on the geometry between the filament and anode in the x-ray tube will be carried out to explain the improvements in the image characteristics of the x-ray tube, which is essential to get a further improved line focused x-rays for the calibration of the KSTAR XCS.

