16th International Toki Conference Advanced imaging and Plasma Diagnostics December 5-8, 2006 Toki-city, Japan

P8-06

Measurement of Electron Density and Temperature and Their Fluctuations Using Modified Triple Langmuir Probe Grounded through Finite Resistance

> M. Takeuchi¹⁾, K. Toi, R. Ikeda¹⁾, C. Suzuki and CHS Experimental Group

National Institute for Fusion Science, Toki 509-5292, Japan ¹⁾Department of Energy Engineering and Science, Nagoya University, Nagoya 464-8603, Japan

E-mail address : m-takeuchi@nifs.ac.jp

Introduction

The triple Langmuir probe (T-LP) method [1] enables us to obtain the electron temperature (T_e) , electron density (n_e) , space potential (V_s) and their fluctuations with high time and spatial resolutions.

These plasma parameters can be derived from the simultaneous measurements of the potential signals (V_f and V_p) and ion saturation current (I_{is}), where V_f and V_p stand for the floating potential and the plus-biased potential respectively.

No current flows in the electrodes are assumed as a simple case.

> In the edge and diverter regions of high temperature plasmas or the low temperature and density plasmas produced at the low magnetic field (< 0.1 T), I_{is} is a fairly low value.

In these situations, the current flow in the circuit of V_f and V_p is comparable to I_{is} , and cannot be neglected.

> For the purpose of the reduction of these circuit current, the high load resistor may be adopted. However, the frequency response of T-LP is significantly degraded.

> In this paper, the effect of the finite current in the potential measurements of V_f and V_p on T_e evaluation is discussed and a new relation to derive T_e with the correction is derived.

An appropriate circuit resistor for the potential measurements is accessed so that T_e can be derived without large correction and having high frequency response of the probe circuit for fluctuation measurements.

The circuit of the typical triple Langmuir probe with five tips

 $-I_1, I_2, \dots, I_5$: current flow in each tip from a plasma

 I_p : current flow in the circuit of V_p

 V_1, V_2, \ldots, V_5 : voltage of the tip against the ground

V_b : DC bias voltage

The potential signals V_{f1} , V_{f2} and V_p are measured through relatively high load resistance such as R_f and R_p , to meet the requirement of no-current flow.

The ion saturation current I_{is} is measured through low load resistance to avoid appreciable voltage drop of biasing voltage.

A typical T-LP method with five electrode tips (1)

The current flow into each tip T1 to T5 consists of electron and ion currents and is expressed as,

$$\begin{split} -I_{1} &= -I_{e0}e^{\phi V_{1}} + I_{i} \\ I_{2} &= -I_{e0}e^{\phi V_{2}} + I_{i} \\ I_{3} &= -I_{e0}e^{\phi V_{3}} + I_{i} \\ I_{4} &= -I_{e0}e^{\phi V_{4}} + I_{i} \\ I_{5} &= -I_{e0}e^{\phi V_{5}} + I_{i} \end{split} \tag{1}$$

 $\phi = e / kT_e$ electron thermal diffusion current $I_{e0} = (1/4)n_e e < v_{the} > S$ $< v_{the} >: \text{ averaged electron thermal velocity}$

S: surface area of a tip

 I_i : an ion current

When I_i is eliminated from the equations (1), the following relation is derived as,

$$\frac{I_{1} + I_{4}}{3I_{1} + I_{2} + I_{3} + I_{4}} = \frac{e^{\phi V_{1}} - e^{\phi V_{4}}}{3e^{\phi V_{1}} - e^{\phi V_{2}} - e^{\phi V_{3}} - e^{\phi V_{4}}} \qquad \qquad V_{d2} = V_{2} - V_{1}$$

$$\frac{I_{1} + I_{4}}{3I_{1} + I_{2} + I_{3} + I_{4}} = \frac{1 - e^{\phi V_{d4}}}{3 - e^{\phi V_{d3}} - e^{\phi V_{d4}}} \qquad (2) \qquad V_{d4} = V_{4} - V_{1}$$

or

If the bias voltage between the T_1 and T_2 (T_3) is higher than T_e by several times ($V_{d2} >> T_e$, $V_{d3} >> T_e$), then $e^{\phi V_{d2}} \sim 0$ and $e^{\phi V_{d3}} \sim 0$ are satisfied. Then, the equation (2) reduces to a simpler one as,

$$\frac{I_1 + I_4}{3I_1 + I_2 + I_3 + I_4} = \frac{1 - e^{\phi V_{d4}}}{3 - e^{\phi V_{d4}}}$$
(3)

A typical T-LP method with five electrode tips (2)

From the current conservation, the relation of current is $I_1 + I_p = I_2 + I_3$. If I_p and I_4 are negligibly small compared to I_1 , I_2 , I_3 , then I_p and I_4 can be set to be 0. In eq. (3), Therefore, I_1 is eliminated using this current relation as,

$$e^{\phi V_{d4}} = \frac{1}{3}$$
 (4)

From eq. (4), electron temperature T_e is derived using measured quantities V_p , V_{fl} , V_{f2} as,

$$T_e = \frac{V_p - V_f}{\ln 3}$$
 (5) $V_f = (V_{fl} + V_{f2}) / 2$

Plasma space potential V_s

 $V_s = V_f + \alpha T_e$ $\alpha : a constant depending on plasma species;$ $<math>\alpha \sim 3.3$ for hydrogen plasma

Electron density n_e

ja de l'anti

 $n_e = \beta I_{is} T_e^{-1/2} / S$ β : constant depending on plasma species and ion temperature I_{is} : an averaged ion saturation current, that is, $I_{is} = (I_{is1} + I_{is2}) / 2$ S: a collection area of ion saturation current

[2] H. Y. W. Tsui et al., Rev. Sci. Instrum. 63, 4608 (1992)

Correction of finite circuit current to electron temperature evaluation

We consider the case that the current flow in the circuit of V_f and V_p is comparable to I_{is} . When I_p and I_4 is not negligible small compared to I_1 , I_2 , and I_3 , the eq. (3) is rewritten by elimination of I_1 using the current conservation relation: $I_1 + I_p = I_2 + I_3$ as,

$$e^{\phi V_{d4}} = \frac{I_2 + I_3 - 2I_4}{3(I_2 + I_3) - 2I_p}$$
(6)

From eq. (6), T_e is derived as,

$$\frac{kT_e}{e} = \frac{-V_{d4}}{\ln\left\{\frac{3(I_2 + I_3) - 2I_p}{(I_2 + I_3) - 2I_4}\right\}}$$

This equation is converted to eq. (7), using measured quantities V_{fl} , V_{f2} , V_p , I_{isl} and I_{is2} as,

$$T_{e_cor} = \frac{V_p - (V_{f1} + V_{f2})/2}{\ln\left\{\frac{3(I_{is1} + I_{is2}) - 2(V_p / R_p)}{(I_{is1} + I_{is2}) - 2\{(V_{f1} + V_{f2})/2 / R_f\}}\right\}}$$

Corrected electron temperature

 $n_{e_cor} = \beta I_{is} T_{e_cor}^{-1/2} / S$

Corrected space potential

 $V_{s_cor} = V_f + \alpha T_{e_cor}$

Corrected electron density

(7)

The effect of the T_e -correction on V_s would be relatively large, compared with that in n_e .

Experimental test of the finite circuit current effect on parameter measurements by a triple Langmuir probe

In order to evaluate the magnitude of the correction in T_e -evaluation experimentally and investigate applicability of the newly derived relation eq. (7).

Experimental condition of plasma

Experimental device : Compact Helical System

hydrogen plasma

low density plasmas of $n_e < -5 \times 10^{17} \text{ m}^{-3}$

low temperature plasmas of $T_e < 30 \text{ eV}$

very low toroidal field (< 0.1 T)

Heating : 2.45 GHz microwaves (~30 kW)

Langmuir probe and the circuit

five tips

radial resolution : 2 mm

poloidal resolution : 6 mm

Simulation of transport phenomena in high temperature and density plasma

K. Toi *et al.*, 29th EPS on Plasma Physics and Controlled Fusion, Montreux, paper No. P4-061 (2002)K. Toi *et al.*, J. Plasma Fusion Res. SERIES 6, 516 (2004)

Langmuir probe can be inserted from edge region to core region without a large disturbance and damage from plasma.

The value of the resistors R_p and R_f : 10 k Ω or 100 k Ω , r_i : 10 Ω .

Voltage divider : an input resistor R_f or R_p and output resistor of 100 Ω

The DC bias voltage V_b : 150 – 200 V.

The data acquisition :ADC having 0.5 or 1 MHz sample rate

Radial profiles of T_e , V_s , n_e derived w/o and with the correction using the resistors of $R_f = R_p = 10 \text{ k}\Omega$

On the reproducible plasma discharges, the Langmuir probe radially was moved for the measurement of the radial profiles, shot by shot.

≻ T_{e_cor} is larger by about 20 – 30 % in core region with relatively high n_e and by about 1.5 to 2.5 times in the low density plasma edge.

The plasma potential V_s is also increased by the T_e correction.

The radial profile of V_s was appreciably modified and the profile of the radial electric field was also modified appreciably.

> On the other hand, n_e slightly decreased.

Radial profiles of T_e , V_s , n_e derived w/o and with the correction using the resistors of $R_f = R_p = 100 \text{ k}\Omega$

Next, we obtained T-LP data, changing the resistors of R_p and R_f from 10 k Ω to 100 k Ω at the same plasma conditions.

≻ T_e and V_s do not have obvious differences with and without the finite current correction.

>Accordingly, n_e also exhibit any obvious differences.

From these observations, it is concluded that

the resistance of 10 k Ω is not large enough to suppress the current flow in the circuits of V_p and V_f ,

and the resistance of $100 \text{ k}\Omega$ is sufficiently large even for low density plasmas employed in these experiments.

The frequency responses of the V_f circuit for the resistance $R_f = 10 \text{ k}\Omega$, $100 \text{ k}\Omega$ and $1 \text{ M}\Omega$.

Accordingly, the resistance should be selected, depending on plasma parameters and experimental purposes.

Discussion and an example of measurement in the edge region of high temperature and density plasma

the

> If we stress measurements of equilibrium parameters of T_e , n_e and V_s and their low frequency fluctuations up to 100 kHz,

resistance of $100 \text{ k}\Omega$ would be appropriate for above mentioned CHS plasmas.

≻If we stress fluctuation measurement in relatively high density plasma,

the relatively low resistance of $10 \text{ k}\Omega$ will be acceptable.

In the experiments of H-mode plasmas produced at high toroidal field of ~1 T in CHS

The resistors of 10 kΩ and 100 kΩ were adopted and the correction of T_e is less than 10% for both resistors even outside the last closed flux surface because the electron density is in the range more than 10¹⁸ m⁻³[6].

≻Fluctuations up to 100 kHz were successfully obtained.

[6] M. Takeuchi et al., Plasma Phys. Control. Fusion 48, A277-A283 (2006)

Summary

We have accessed the effect of finite current which flows an electrical circuit for V_f or V_p measurement in a triple Langmuir probe, and derived the new equation to evaluate T_e using signals obtained by T-LP.

This correction was experimentally investigated in low temperature plasmas produced at very low toroidal field (< 0.1 T) where electron density is in the fairly low density range of ~ 10^{17} m⁻³.

>For this low density plasma in CHS, the resistor of 100 k Ω in the measurement circuit of V_f or V_p was appropriate for suppressing the circuit current and ensuring sufficiently high frequency response up to 100 kHz for fluctuation measurements.

> In the edge region of relatively high density plasmas produced at higher toroidal field, the resistor of 10 k Ω is also acceptable for suppressing the current flow and having high frequency response.