Development of Short-Wavelength Far-Infrared Lasers and Optical Elements

Chubu University¹⁾ National Institute for Fusion Science(NIFS)²⁾
<u>K. Nakayama¹⁾</u>, M. Tomimoto¹⁾, and S. Okajima¹⁾,
K. Kawahata²⁾, K. Tanaka²⁾, T. Tokuzawa²⁾, T. Akiyama²⁾, and Y. Ito²⁾

Introduction

Far-infrared (FIR) lasers have been utilized as optical sources to measure an electron density of fusion plasmas. Powerful 48- and 57- μ m CH₃OD lasers pumped by a 9R(8) CO₂ laser have been developed to establish a new two-color FIR laser interferometer system for high density operation of the LHD and large volume plasma devices such as ITER.

To design the collimated beams for the interferometer, the beam profiles and the divergence angles have been measured for the 48- and 57- μ m CH₃OD lasers oscillated simultaneously. Water vapor absorptions at 22 °C for the laser wavelengths have been measured to realize the propagation line.

Optical constants and transmittance (reflectance) of crystal quartz, silicon, CVD-diamond, polyethylene sheet, Mylar film, TPX plate, metal mesh and wire grid have been measured to design the optical components (observation windows and beam splitters) in the 48- and 57-µm laser interferometer system.

Development of 50-µm lasers

Optically pumped FIR laser system in Chubu University

CW CO₂ laser pumped twin FIR laser system

Detuning curves of the 48- & 57-µm CH₃OD lasers

Transmission properties of 50-µm lasers

Beam profiles of the 48- & 57-µm CH₃OD lasers

Beam propagations of the 48- & 57- μ m CH₃OD lasers

Experimental setup of water vapor absorption measurement

The humidity in the cell was adjusted by a moist air and a dry air. The humidity and temperature were measured by two thermometer / hygrometer at inner both ends. The transmitted laser power after passing through the absorption cell was detected by a pyroelectric detector.

Transmissivity of the water vapor cell for 48-& 57- μm and 119- μm lasers.

The transmissivity is normalized to 1.0 at 0 % in humidity in a vacuum.

Absorption coefficients (H = 39 % (ρ = 7.5 g/m³), T = 22 °C)

Large absorption 0.19 m⁻¹ for 119 μm CH₃OH laser 0.51 m⁻¹ for 57.2 μm CH₃OD laser 0.91 m⁻¹ for 47.6 μm CH₃OD laser

Attenuations by water vapor absorption in the air $(H = 11.5 \%, T = 22 \circ C)$

Transmission Distance [m]	Attenuation [%]		
	48 µm	57 µm	
5	57	38	
10	81	62	

It is therefore very important to eliminate humidity when using the 48- and 57-µm lasers.

Optical elements for 50-µm lasers

Reflectivity and transmissivity by multiple reflection of an etalon

$$R_{i} = \frac{r_{i}(1 + A_{i}^{2} - 2A_{i}\cos\delta_{i})}{1 + A_{i}^{2}r_{i}^{2} - 2A_{i}r_{i}\cos\delta_{i}}$$
$$T_{i} = \frac{A_{i}t_{i}^{2}}{1 + A_{i}^{2}r_{i}^{2} - 2A_{i}r_{i}\cos\delta_{i}}$$

where

$$A_{i} = \exp\left(-\alpha_{i}n_{i}h(n_{i}^{2} - \sin^{2}\theta)^{-\frac{1}{2}}\right)$$
$$\delta_{i} = \frac{4\pi h}{\lambda}(n_{i}^{2} - \sin^{2}\theta)^{-\frac{1}{2}}$$

 r_i , t_i are given by Frenel's formulae

$$\lambda, h, \theta, T \square n, \alpha$$

<u>119-µm laser interferometer on the LHD</u> Optical constants of Qu for a 119 µm laser were measured by this method. The windows and beam splitters of Qu were designed.

Experimental setup of optical constants measurement

Measurement time: about 30 min.

Output stability of FIR lasers: ±1 % / 30 min.

 \Box Transmittance of the first peak

Transmittance of etalons for the 48- & 57-µm lasers

Refractive Index *n* and Absorption Coefficient α of Qu, CVD-diamond, and Si for the 48- & 57-µm lasers

	57.1511 μm		47.65 μm	
Sample	n	lpha [cm ⁻¹]	n	lpha [cm ⁻¹]
Crystal Quartz*	2.1765 ± 0.0002	3.8 ± 0.1	2.219 ± 0.001	6.4 ± 0.2
Crystal Quartz**	2.2306 ± 0.0002	2.9 ± 0.1	2.260 ± 0.001	4.9 ± 0.2
CVD- Diamond	2.383 ± 0.002	0.19 ± 0.05	2.383 ± 0.002	0.25 ± 0.05
Silicon	3.4164 ± 0.0005	0.36 ± 0.05	3.416 ± 0.001	0.33 ± 0.05

Crystal Quartz: Thickness 1.5845 mm, *Ordinary-ray, **Extraordinary-ray

CVD-Diamond: Thickness 1.023 mm

Silicon: Thickness 1.5845, 2.1718, and 1.5452 mm, Resistivity 2.8 kΩcm, Temperature 20 °C

Transmittance T and reflectance R of polyethylene, TPX, Mylar, metal mesh at 45 ° incidence for the 48- & 57- μ m lasers

Transmittance T and reflectance R of Polyethylene, TPX, Mylar, Metal Mesh, and Wire Grid at 45 ° incidence for the 48- & 57- μ m lasers

	57.1511 μm		47.65 μm	
Sample	Tp [%]	Rp [%]	Ts [%]	Rs [%]
Polyethylene	85	1	70	6
ТРХ	66	2	47	10
Mylar	64	4	51	14
Metal Mesh	29	68	23	74
Wire Grid	93	2	89	6

- Polyethylene sheet: Thickness 0.9 mm
- TPX plate: Thickness 3.06 mm
- Mylar film: Thickness 0.05 mm
- Metal Mesh: Wire Width 7.4 μm, Hole Size 18 μm
- Free Standing Wire Grid: Wire Diameter 5 μm, Wire Spacing 12.5μm,

The elected filed of the laser is perpendicular to the wire.

Example designs of optical elements for the 48- & 57-µm lasers

Summary

Short-wavelength FIR Lasers

To design collimated beams for the two-color laser interferometer using 48- and 57- μ m CH₃OD lasers, the intensity profiles have been measured in the simultaneous oscillations. The beam divergence angles for the 48-laser and 57- μ m lasers have been found to be 6.1 × 10⁻³ rad and 7.3 × 10⁻³ rad, respectively.

Water vapor absorptions of the 48- and 57- μ m lasers have been measured. The absorption coefficients at 22 °C and 39% have been 0.91 m⁻¹ for the 48- μ m laser and 0.57 m⁻¹ for the 57- μ m laser. It has been found that a sufficient or a complete dehumidification is necessary for a long distance transmission of the 48- and 57- μ m lasers.

Optical Elements for 50 µm lasers

We have measured optical constants (n, α , T, and R) of crystal quartz, silicon, CVD-diamond, polyethylene, Mylar, TPX, metal mesh, and wire grid for the 48- and 57-µm lasers. It has been found that CVD-diamond and high resistive silicon etalons are suitable material as observation windows and beam splitters in the interferometer.