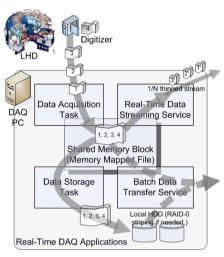


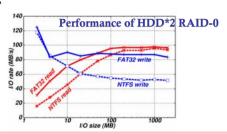
National Institute for Fusion Science, National Institutes of Natural Sciences, Japan

Nonstop Loss-less Data Acquisition and Storing Method for Plasma Motion Images

Nakanishi H., Ohsuna M., Kojima M., Imazu S.*, Nonomura M., Okumura H.**, Nagayama Y., and Kawahata K. (NIFS, Pretech Corp.*, Mie Univ.**)

♦ Backgrounds:

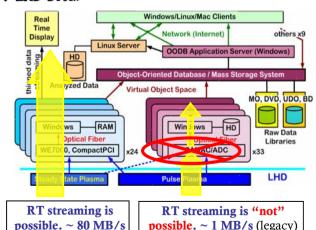

- > LHD data acquisition system, "LABCOM system", has been fully functional for steady-state operations. (max. 80 MB/s/diag)
- New CompactPCI (PXI) digitizer can continue frame grabbing at full rate. A VGA color camera outputs **70.3 MB/s**.


"Data explosion" occurred!

- > Image data occupies the greater part of storage volume.
- Current "zlib" compression algorithm becomes slow and even less compressive for 2-D image data.

How can we improve them? The "loss-less" is mandatory.

♦ RT Stream & Store Architecture:


RT Streaming ...

- Max. 80 MB/s streaming is even possible, but 1/N thinning is available by client request.
- ☐ Streams are sent by UDP/IP, not heavy TCP/IP.

RT Storing ...

- ☐ Stream is stored into multiple 10 s chunks by every signal channel.
- ☐ Faster RAID-0 (striping) is necessary if >50 MB/s.

◆ LHD DAQ:

- As a camera signal contains time series of 2-D frames, the whole data become much bigger as one channel output. e.g. color VGA: 703 MB/10 s.
- > Data retrieval by each frame must be fast.
 - -> Storing by frame, not by channel, is needed.

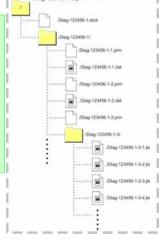
Compression Algorithm Examination:

Deterioration of compression ratio from 2003 to 2004:

	7c	8c	Increased (%)
raw (MB)	868.3	2111.8	243.2
comp. (MB)	164.5	640.7	389.6
comp. ratio (%)	18.9	30.3	

"zlib" compression ratios for 1-D & 2-D data:

	raw (MB)	comp. (MB)	ratio (%)
waveform	1372.1	377.8	27.5
image	739.8	262.6	35.5
TOTAL	2111.8	640.4	30.3


Comparison of loss-less image compression algorithms:

	0		
	comp. (byte)	ratio (%)	cpu time (s)
zlib	217493	39.1	0.113
png	192958	34.7	0.220
JPEG-LS	137651	24.7	0.031

- Embedded compression algorithms should be automatically changed between 1-D::zlib & 2-D::JPEG-LS.
- Compressed size ~ 1/4 again!

◆ Portable Archive File:

- Standard "zip" archive format having
- "Shot/Channel/(Frame)" sub-folders with data & meta-info. text files in each.
- All wave & image data are stored as independent files compressed in archive.
- "zip" has fast seeking index inside.

Summary & Future:

- "LABCOM" system has been fully functional for nonstop loss-less image acquisition for plasma diagnostics, with max. 80 MB/s/diag bandwidth.
- > Full-rate streaming and storing are even possible in RT.
- > **JPEG-LS** should be used for image data instead of **zlib** for wave signals, maybe in other scientific fields.