Instability of Thin-Walled Annular Beam in Dielectric-Loaded Cylindrical Waveguide

S. Tamura, M. Yamakawa, Y. Takashima and K. Ogura

Graduate School of Science and Technology, Niigata University, 950-2181, Japan
(Received 15 October 2007 / Accepted 3 August 2007)

Cherenkov and slow cyclotron instabilities driven by an axially injected electron beam in cylindrical waveguide are studied by using a new version of self-consistent liner theory considering three dimensional beam perturbations. There are three models of beam instability analysis, which are based on solid beam, infinitesimally thin annular beam, and thin-walled annular beam. Among these models, a model properly representing the often used actual annular electron beams is thin-walled annular beam. We develop a numerical code for a cylindrical waveguide with a thin-walled annular beam having a finite thickness. Our theory is valid for any beam velocity. We present eigen modes with plasma and beam. And instabilities driven by thin-walled annular beam in dielectric-loaded waveguide are examined.

Keywords: Thin-walled annular beam, low-frequency surface wave mode, high-frequency surface wave mode, Cherenkov instability, slow cyclotron instability

1. Introduction

The backward wave oscillator (BWO) or traveling wave tube (TWT) is one of the high power microwave sources and can be driven by an axially injected electron beam without initial perpendicular velocity. For relatively low power in some 10 kW level or less, Pierce type cathodes are commonly used and beam shape is approximated by a solid beam. In many high power experiments, cold cathodes are used and the shape of electron beam is a thin-walled annulus. A new version of self-consistent field theory considering three-dimensional beam perturbations are developed based on a solid beam [1-2]. For infinitesimally thin annular beam, the boundary is modulated due to the transverse modulation of annular surface. Analyses of infinitesimally thin annular beam need to be based on a different theory from thin-walled annular and solid beam. A pioneering work can be seen in Ref. [3]. Recently, instabilities of eigen mode due to the surface modulation are analyzed in Ref. [4], presenting a self-consistent field theory considering the moving surface modulation.

In this work, we develop a numerical code for a cylindrical waveguide with a thin-walled annular beam. Note that the annular beam thickness is finite. The boundary condition at the beam surface is different from the infinitesimally thin annular beam. Solid beam and thin-walled annular beam are based on the same boundary condition, but the number of boundary is different. Thin-walled annular beam has outside and inside surface, and solid beam has only outside surface. Our numerical codes are valid for any beam velocity \(v \). We present the eigen modes for waveguide with plasma \((v=0)\) and beam \((v>0)\) modes.

The organization of this proceeding is as follows. In Sec. 2, we describe numerical method of thin-walled annular beam and solid beam. In Sec. 3, dispersion curves of thin-walled annular plasma and solid plasma are examined. In Sec. 4, we examine Cherenkov and slow cyclotron instabilities driven by thin-walled annular beam in dielectric-loaded waveguide. Discussion and conclusion of this paper are given in Sec. 5.

2. Numerical method

For slow-wave devices, the periodically corrugated slow-wave structure (SWS) is used [5, 6]. However, analyses of these devices are very complex. Therefore, we analyzed basic electromagnetic characteristics of cylindrical waveguide with straight wall. We consider a dielectric-loaded waveguide (Fig.1). The wall radius \(R_w=1.445 \) cm, dielectric radius \(R_d=0.85 \) cm. In the case of plasma \((v=0)\), relative permittivity of dielectric \(\varepsilon_r=1.0 \). For analyzing beam interactions, \(\varepsilon_r=4.0 \). We used this model to examine basic characteristics of the electromagnetic wave and the beam interaction. For thin-walled annular beam, average beam radius \(R_b=0.75 \) cm, and beam thickness \(\Delta_p=0.1 \) cm. For solid beam, beam outside radius \(R_b=0.8 \) cm.
A guiding magnetic field B_0 is applied uniformly in axial direction. An electron beam is propagating along the guiding magnetic field. The temporal and spatial phase factor of all perturbed quantities is assumed to be $\exp[i(k_z z + m \theta - \omega t)]$. Here, m is the azimuthal mode number and k_z is the axial wave number.

In the system with magnetized plasma or beam such as Fig.2, electromagnetic modes are the hybrid mode of transverse magnetic (TM) and transverse electric (TE) mode. Two letters of EH and HE is used, to designate the hybrid mode. In this paper, TM is dominant in EH mode and TE is dominant in HE mode.

An electron beam surface is modulated as beam is propagating. For thin-walled annular beam and solid beam, the transverse moderation appears as the surface electric charge at the fixed boundary as shown in Figs.2 and 3. Solid beam has one surface. Thin-walled annular beam has another surface inside beam because there is a vacuum region inside the beam.

3. Dispersion curves of plasma
We present results of thin-walled annular plasma and solid plasma analyses ($\nu=0$). Here, ω_p and Ω are plasma frequency and cyclotron frequency. In this section, $\omega_p=3\times10^{10}$ rad/s. Figure 4 shows the dispersion curves of thin-walled annular plasma and Fig. 5 shows the dispersion curves of solid plasma in the absence of magnetic field. Axisymmetric electromagnetic modes are the TM_{0n} and TE_{0n} mode. Here, n is any positive integer. Dispersion curves of thin-walled annular plasma shows two surface waves due to the inner and outer surface space charges: high- and low-frequency surface wave modes. Solid plasma has only one surface wave mode due to the outer surface space charge.
The high-frequency surface wave mode is attributed to the inner boundary of thin-walled annular plasma (Fig. 2). The low-frequency surface wave mode is attributed to the outer surface of annulus and corresponds to the surface wave mode of solid plasma. Their frequency is zero at \(k_z = 0 \), increases with increasing \(k_z \), and approaches an asymptotic limit as \(k_z \rightarrow \infty \). This limit is \(\omega_p/\sqrt{2} \). The frequency of high-frequency surface wave mode for the annulus is \(\omega_p \) at \(k_z = 0 \), decrease with increasing \(k_z \), and approach an asymptotic limit as \(k_z \rightarrow \infty \). This limit is also \(\omega_p/\sqrt{2} \).

The dispersion curves for the thin-walled annular and solid plasma are respectively shown in Figs. 6 and 7 at \(B_0 = 0.1 \) T \((\omega_p > \Omega) \) and in Figs. 8 and 9 at \(B_0 = 0.2 \) T \((\Omega > \omega_p) \). With the finite strength magnetic fields, electromagnetic modes are the hybrid mode of TM and TE modes: axisymmetric \(E_{H_0} \) and \(H_{E_0} \) modes in the figures. And cyclotron modes are appeared in addition to the space charge modes. For both of thin-walled annular and solid plasma, the frequencies of cyclotron mode are between the upper hybrid frequency \(\omega_h = (\Omega^2 + \omega_p^2)^{1/2} \) and \(\Omega \) or \(\omega_p \), whichever is larger.

As for the space charge modes, surface wave modes exist as in the case of \(B_0 = 0 \) if \(\Omega < \omega_p \). With increasing \(k_z \), the frequencies of low-frequency surface wave mode and surface wave mode of solid plasma are increased and approach an asymptotic limit as \(k_z \rightarrow \infty \). The limit is between \(\omega_p \) and \(\omega_p/\sqrt{2} \). The frequency of high-frequency surface wave mode is decreased with increasing \(k_z \), and has the same asymptotic value as the low-frequency mode in the limit of \(k_z \rightarrow \infty \).

The presence of magnetic field yield plasma modes due to the volume space charge perturbation, those are denoted as plasma modes in Figs. 6-9 [2]. The low-frequency plasma mode of thin-walled annular plasma and the solid plasma mode have frequencies that are zero at \(k_z = 0 \), increase with increasing \(k_z \), and approach an asymptotic limit as \(k_z \rightarrow \infty \). This limit is \(\omega_p \) or \(\Omega \) whichever is smaller. The annular plasma has high-frequency plasma mode. Its frequency approaches an asymptotic limit between \(\omega_h \) and \(\Omega \), as \(k_z \rightarrow \infty \) with \(\Omega > \omega_p \).
5. Instabilities driven by thin-walled annular beam

In this section, we examine instabilities driven by beam \(v > 0 \). Figure 10 shows the dispersion curves for a thin-walled annular beam with the energy 660 keV, beam current 2.3 kA and \(B_0 = 0.8 \) T. For an electron beam propagating along the direction of an axial magnetic field, there exist four beam modes. They are the fast and slow space charge modes and the fast and slow cyclotron modes. Slow space charge mode and slow cyclotron mode couple with both of EH\(_{01}\) and HE\(_{01}\) mode, resulting in the Cherenkov and slow cyclotron instabilities. Instabilities for EH\(_{01}\) mode are predominating, compared with those for HE\(_{01}\) mode.

Figure 11 shows the dependence of the temporal growth rate on beam thickness \(\Delta p \). The beam outer radius is fixed to 0.8 cm, and beam inner radius has been changed with a fixed line charge density. The growth rate of Cherenkov instability increases by decreasing \(\Delta p \).

The growth rate of slow cyclotron instability also increases by decreasing the beam thickness. But, in the region of \(\Delta p < 0.035 \) cm, the growth rate decreases.

In the limit that the beam inner radius is zero, the growth rate of Cherenkov and slow cyclotron instabilities of thin-walled annular beam approaches the growth rate of solid beam, \(\blacktriangle \) in Fig.11. In the other limit that \(\Delta p \rightarrow 0 \), the corresponding growth rates are those of an infinitesimally thin annular beam model with \(\Delta p = 0 \) [2] and are depicted by \(\bullet \) in Fig.11. Two models based on finite and zero \(\Delta p \) give almost the same results for the Cherenkov instability. For slow cyclotron instability, the growth rates are different between two models. This might be caused by the difference of annulus structure: one has an internal structure between the inner and outer surface and the other is just a sheet without any internal structure.

5. Conclusion

We develop a numerical code for a cylindrical waveguide with a thin-walled annular beam considering three-dimensional beam perturbations, which is valid for any beam velocity \(v \). Electromagnetic modes are the hybrid mode of TM and TE mode. Cyclotron and space charge modes corresponding to the solid case exist. Note that, for space charge modes, surface wave modes exist in addition to the volume wave mode if \(\Omega < \omega_p \). As characteristic modes of annular case, the high-frequency space charge modes appear due to the inner surface. A thin-walled annular beam drives slow cyclotron as well as Cherenkov instability. The Cherenkov instability increases by decreasing \(\Delta p \) to zero. The slow cyclotron instability increases by decreasing \(\Delta p \), reaches the maximum at a certain value of \(\Delta p \) and decreases in the limit of \(\Delta p \rightarrow 0 \).

Acknowledgments

This work was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan, and partially performed under the Collaborative Research Program between NIFS and University of Tsukuba in cooperation with Japanese universities.

References