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Introduction
Heliotron J Device

Heliotron J is a helical axis heliotron
Major Radius: 1.2 m
Minor Radius: 0.1-0.2 m
Helical Coil: L=1, M=4

Heliotron J is a helical-axis heliotron
device based on the quasi-
omnigeneous concept.

Magnetic Field Strength: 1.5 T
Rotational Transform: 0.3-0.8
Heating Systems

NBI: 30 kV 0 7 MWX2

Experimental survey of the guiding 
principle for optimizing the confinement-
field structure is a major issue for 
Heliotron J

Helical Coil

NBI: 30 kV, 0.7 MWX2
ECH: 70 GHz, 0.45 MW
ICRF: 19-23 MHz, 0.4 MWX2

Heliotron J.

Using five sets of coils fed by individual 
power supply, the toroidicity, the helicity 

d th b i b h d

Plasma

ICRF

ECH

NBI BL-2and the bumpiness can be changed.

Here, the role of the bumpiness is 
presented for fast-ion confinement, non-

Toroidal 
Coil BCX-NPA

p ,
inductive currents and bulk plasma 
confinement.

The bumpiness is controlled by

Toroidal 
Coil A

CX NPA

NBI BL-1

The bumpiness is controlled by 
changing the current ratio of Toroidal 
coil A to Toroidal coil B.



Iota and Fourier Components
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Magnetic Surfaces
HIGH MEDIUM LOWMEDIUM

Corner Corner Corner

ECH
ICRF Antennas

Straight Straight Straight

ECH



Configuration Characteristics
I th f th hi h b fi tiIn the case of the high bumpy configuration;

the minimum values of field strength are relatively flat, and 
the angle between the field line and       is small.B∇

The shift of the drift orbit from the flux surface is expected to be smaller in the 
higher bumpy configuration.
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Poloidal profiles of |B| along a field line (Upper) and |B| contour (Lower) at ρ = 0.592.



Trajectory Change by the Bumpiness
E = 1 keV, ρ = 0.3, θ = 0 °, φ = 45 °, θpitch = 80°

Higher Bumpy Field



Fast Ion Confinement Control by
‘Bumpiness’Bumpiness

• Fast ion confinement is investigated by using ICRF minority heating (H-
minorit and D majorit ) for the three b mpinessminority and D-majority) for the three bumpiness.

• An ICRF wave in the minority heating accelerates protons in the 
perpendicular direction. ICRF heating is suitable for the confinement study 
of trapped ions.pp
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The configurations used in these 
studies were as follows; the 
bumpiness (B04/B00, where B04 is

Bumpiness
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Loss Region is Changed by the Bumpiness
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There is a loss region near the 
perpendicular direction.

It is smallest in the high bumpy case.
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Heating and Diagnostic System

ICRF
(Horizontal Port)
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Time Traces of Heating and Plasma Parameters

A plasma is generated by an ECH pulse. 
ECH power is about 300 kW.
An ICRF pulse is injected during ECH. 
ICRF heating power is 250 300 kW XU

V
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ICRF heating power is 250 – 300 kW.
The density is not changed during the ICRF 
pulse. The line averaged density is 0.4 x 
1019 m-3.
Hydrogen and deuterium fluxes are 9

m
‐2
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Hydrogen and deuterium fluxes are 
measured by a charge-exchange neutral 
particle analyzer (CX-NPA).
CX-NPA can be changed the angle of the 
line of sight toroidally and poloidally
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Bumpy Dependence of Proton Energy Spectrum
106
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128 degHigh 
Bumpiness
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• An ICRF pulse of 23.2 MHz or 19 MHz is injected into an 
ECH target plasma where Ti(0) = 0.2 keV, Te(0) = 0.8 keV
and = 0.4 x 1019 m-3. ICRF injection power is 250-300 kW.

• In high bumpy case the ion flux is measured up to 34 keV at
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In high bumpy case, the ion flux is measured up to 34 keV at 
the pitch angle of 120 deg.

• In the medium and the low cases, high energy components 
(E > 15 keV) are not observed. In low bumpy case, the fast 
ion flux is increased continuously towards 90 deg
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Calculated Pitch Angle Distributions
High Bumpiness
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• The high energy ions are generated near 60 deg 
and 120 deg in pitch angle in the bumpy case. The 
higher energy flux can be observed in the high 
bumpy case in comparison with other cases. The
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• In the medium and low bumpy cases, the high 
energy component is smaller than that in the high 
bumpy case.
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• One of the reasons of these tendency is the orbit 

loss structure near the perpendicular direction.
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Non-Inductive Toroidal Current Control 
by Bumpiness and Heating Position

A toroidal current is not required for attaining plasma equilibrium in Heliotron J.
However, if it flows spontaneously, it affects the equilibrium and stability since it 

difi th t ti l t f

Vertical Injection

modifies the rotational transform.

A boot strap (BS) current can be controlled 
by the bumpiness.
An electron cyclotron (EC) driven current 
can be controlled by the power-deposition 
position.

ECH
Beam

ECH Beam
Second Harmonic Heating
X-mode injection
N// = 0.44 Beam

(60R)
N//  0.44

Vertical Injection
Oblique to the

LCFSMagnetic Axis
Oblique to the 
magnetic field line
(helical-axis device)



Estimation of the Bootstrap Current and the Electron 
Cyclotron Driven Current

In ECH plasmas, the toroidal current is composed of the bootstrap current and 
the EC driven current. Two kinds of currents are separated by changing the  
direction of the confinement field (Normal direction and reversed direction).
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III
III
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+=

BSEC III
Medium Bumpiness



Bumpy Component Dependence of the Toroidal Current in 
ECH Plasmas

• The toroidal current is increased with electron density and gradually becomes 
saturated for the three bumpy cases.

• By changing the bumpiness the toroidal current (BS current) can be controlled byBy changing the bumpiness, the toroidal current (BS current) can be controlled by 
about 1 kA . ECH power is about 300 kW.
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EC driven current can be controlled by changing the 
location of the ECH power deposition

• The toproidal current can be controlled by changing the deposition location of the 
ECH beam. The current direction is reversed between the high and medium 
bumpiness near ω0/ω = 0.49 at a fixed density (0.5 x 1019 m-3).

C ( ) f

Deposition Location

• The maximum EC driven current (-4.6 kA) flows in the low bumpy case.

Fisch-Boozer Effect Ohkawa Effect

Deposition Location Electron Density319m105.0 −×=en 49.0/0 =ωω



Bulk Confinement for ECH Plasmas
•For ECH plasmas the medium and high bumpy configurations are favorable for theFor ECH plasmas, the medium and high bumpy configurations are favorable for the 
bulk confinement.

•The effective helical ripple, εeff in the 1/ν collisionless regime is lowest in the medium 
bumpiness(0.22, 0.13, 0.26 at 2/3a for the high, medium and low bumpiness). 

•The H-mode was not observed in the high bumpy case under the same condition  as 
the medium and low bumpy cases.
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Bulk Confinement for NBI Plasmas
The injection of NB is counter direction S. Kobayashi: I-16, TomorrowThe injection of NB is counter-direction. 
In NBI plasmas, the Wp of the high  and medium bumpiness is higher than that in the low 

bumpiness.
The enhancement factor of the energy confinement

time for the ISS95 scaling is 1 8 1 7 and 1 4 in the
319m100.2 −×=en

y ,

time for the ISS95 scaling is 1.8, 1.7 and 1.4 in the
high, the medium and the low bumpy configurations.
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T. Mizuuchi: P2-16, Tomorrow



Summary

• The effect of the bumpy component on energetic ion distribution in velocity space has 
been investigated using ICRF heating in the minority heating. In the high bumpy case, 
the ion flux is measured up to 34 keV at the pitch angle of 120 deg. The observed tail p p g g
is largest in the high bumpy configuration. The high bumpiness is most favorable for 
the fast ion formation and confinement.

• The bootstrap current and the electron cyclotron driven current are estimated• The bootstrap current and the electron cyclotron driven current are estimated 
experimentally by changing the confinement field direction. They can be controlled by 
changing bumpy field and the deposition location. By using the combination of these 
control knobs, the toroidal current can be changed from 2 kA to -4.5 kA.

• In ECH plasmas, the medium bumpiness is most favorable in the bulk confinement. 
This result is consistent with the effective helical ripple, εeff. However, in NBI plasmas, 
the plasma stored energy of the high bumpy case is somewhat higher than that in thethe plasma stored energy of the high bumpy case is somewhat higher than that in the 
medium bumpiness. It is supposed that the good confinement of the slowing-down 
ions causes the effective heating for the bulk plasmas.

• SMBI experiment has been started. It extends the operation region and offers the 
optimization tool for the fueling. 


