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2Large Helical Device
（ＬＨＤ, NIFS, Japan）

Largest helical and super conducting 
machine in the world

Magnetic energy 1 GJ
Cryogenic mass(-269℃) 850 t
Tolerance < 2mm

External dia.      13.5 m
Plasma Maj. R.  ~3.7 m
Plasma Min. R.  ~0.6 m
Plasma Vol.         ~30 m3

Magnetic field        3 T
Total weight     1,500 t

Exp. started at 
F.Y.1998

Shot 
# 90426

(Up to Dec.5/2008)

ECH  77 – 168 GHz/~3MW
ICH   25-100 MHz/~3MW
NBI    para.+perp./~23MW
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Recent achievements and Designed target in LHDRecent achievements and Designed target in LHD
AchievementsAchievements ［［Designed targetDesigned target］］
Ion Temperature

Central Ti 5.2 keV  (Low Z)  [10 keV]
Density      1.6×1019m-3 [2×1019m-3 ]

Electron Temperature
Central Te 10 keV [10 keV]
Density      5×1018m-3 [2 ×

 

1019m-3]
Volume Averaged β

5.1 % transient, 5% quasi-steady
(B0 =0.425T)           [≥

 

5 % (1-2 T)]
Steady State Operation

54m28s (490 kW) 1.6 GJ
800s (1.1 MW) [1 hour (3 MW)]

High Density
1.1×1021m-3 (Super high density with Peaked prof.)

> 10 keV : reactor
condition

Economical 
reactor
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input energy
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High stored energy 
comparable to big tokamaks

In the large plasma parameter space 
systematic investigations become possible

→

 
Accumulation  of physical data
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OutlineOutline

1.  High ion temperature with confinement 
improvement similar to Internal Transport 
Barrier (ITB)

2.  High density ne (0) > 1021m-3 with Internal 
Diffusion Barrier (IDB)

3.  High beta  <β> = 5 % in quasi-steady state

4.  Steady state operation with high input power 
and high heat load

5.  Summary
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40keV-perpendicular
NB injector

4 beam lines of NBI (at present)
= 3 tangential  +  1 perpendicular  ( + 1perpendicular in 2010 ; in plan)

Perpendicular beam; updated
• 7 MW, ENBI = 40keV

with positive-ion sources 
• Ion heating
• works as a diagnostic beam for  

CXRS (Ti , Vφ

 

, Vθ

 

, Er )

Tangential beams
• 16 MW in total, ENBI = 180 keV

with negative-ion sources
• Primarily electron heating
• Good heating efficiency

180keV-tangential 
NB injector

Total input power; 23 MWTotal input power; 23 MW

High Ti Update of NBI heating systemUpdate of NBI heating system
to to improve ion transport studyimprove ion transport study
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Schematic View of discharge

# Plasma produced with ECH and sustained with 
NBI.

# Particles are fueled with Gas puffing or  pellet 
injection and NBI.

# NBI with positive ion sources is modulated on and 
off with 5Hz for CXRS. 

ne = 1 ~ 2 x1019 m-3

Typical density at high Ti phase 
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High Ti

(Wed) I-11 by M.Yoshinuma
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Ti < Te
▽Ti ~ ▽Te   at ρ < 0.5

Ti > Te
▽Ti >> ▽Te  at ρ < 0.5 

High Ti discharge with confinement improvement

L-mode Improved confinement with 
Internal Transport Barrier
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Improvement of ion 
transport in Core 

High Ti

Mechanism of the Ion ITB formation; under investigationMechanism of the Ion ITB formation; under investigation
What is the key parameter? 
Ratio of Te/Ti, Deposition power, Er, Vt and so on?

L-mode

High Ti

ne ~ 1.6 x1019 m-3
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#  Super high density with peaked prof. is  
obtained just after the multi-pellet 
injection.

Maximum ne (0) exceeds 1×1021 m-3

#  High central pressure is obtained during 
the density decay phase.

Maximum P(0) ~150 kPa
Large Shafranov shift; 

reaches to half the radius
predicts large stochastic region.
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Extension of the high density operation regime Extension of the high density operation regime 
with good energy confinement in IDB plasmaswith good energy confinement in IDB plasmas

(Wed) I-12 by T.Morisaki

#  Confinement capability rolls over 
in high density regime w/o IDB

# IDB plasmas extend the high 
density regimes with the good 
energy confinement (ISS95 
scaling).

Achievements of high n Achievements of high n and high pand high p in in 
Internal Diffusion BarrierInternal Diffusion Barrier plasmasplasmas
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#  Core density is abruptly expelled 
at high central pressure phase

#  Sometimes MHD events are 
observed around CDC. 

Operational limit of IDB plasmas
High n
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Limitation of central pressure by 
Core Density Collapse

#  High density plasma inhibit NB 
penetration to the core

#  Density rise by pellet is limited

Driving mechanism; 
under investigation 

(MHD insta. and/or equil. limit) 

Limitation of central density by lack 
of central heating power

Central heating efficiency is a key issue 
=> high energy NBI. Bernstein Wave etc.

CDC event

Magnetic
axis

Edge

SX fluctuation
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/B0 [10-5]

# No disruptive high beta plasma is 
maintained during around 40τE

# Large shafranov shift Δ/ap ~ 40%
# Low-n,m MHD activities
- No observation of core resonant modes.
- Only resonating mode with peripheral 

surf. (m/n = 2/3 and 1/1) appear

QuasiQuasi--steady highsteady high--ββ
 

discharge <discharge <ββ>=5.0 %>=5.0 %

Fine structure (flattening and Fine structure (flattening and 
asymmetry) effect on a global asymmetry) effect on a global 
confinement looks smallconfinement looks smallτE ~10ms

Some fine structures are Some fine structures are 
observed.observed.

Theoretically;Theoretically;
LowLow--n MHD insta. with n MHD insta. with 
narrow radial mode width narrow radial mode width 
are predicted.are predicted.

High β

0

2

4

6
~5.0%

NBI//
NBI

B0 ~0.425T, R~3.7m, ap ~0.55m, Vp ~22m3

Mainly tangential NB heats plasmas
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Effect of MHD instability on the confinement
Global confinement and peripheral 
local transport degrading with beta

High β

Present LHD < β
 

>~5% is obtained in 0.42T, 
1T, <β>~4% plasma => S ; 10 times larger

P
aB

S eff
43

0
23β

∝

# χ
 

dependence on β
 

is similar with a 
prediction based on MHD (resistive 
interchange mode) driven turbulence.

proposed by Carreras et al. (PoF B1 (1989))

BpGMTe χρνβχ 33.0
*

67.0
*

1∝

Magnetic Reynolds number, Magnetic Reynolds number, 
S, is a key parameter for S, is a key parameter for 
resistive MHD insta.resistive MHD insta.

3
2

−
∝ S
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High central beta plasmas by IDB formation
High β
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<<ββ>~>~55%%

IDB Scenario
<β>~2.5%

0

5

10

3 3.5 4 4.5

β  (%)

R(m)

As Bt decreases, 
CDC effect on confinement 
becomes small
=> Achieved β0

 

increases

Rax
V=3.75m

Rax
V=3.65m

Reason not clear yet!!

β0 comparable with 
standard high beta 
operation has been achieved 
by IDB formation
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PortPort--through power //NBI through power //NBI 13.8MW13.8MW
<<ββ

 
diadia > ;   4.8% (> ;   4.8% (ββ

 
perpperp ~3.2)~3.2)

<<ββ
 

kinkin > ;  > ;  3.6% 3.6% ((ZZeffeff =2.5) =2.5) 
(2x(2x<<ββ

 
kinkin--ee >>; 4.3%; 4.3%))

<<ββ
 

beambeam >; >; 1.5%1.5% (Cal. by FIT code)(Cal. by FIT code)

<βdia > ;  based on the diamagnetic measurement.
<2xβkin-e >;  based on the Te and ne profile measurements Zeff =1 and Ti =Te are assumed. 
(When Zeff =2.5, <βkin >~3.6%(βperp ~2.45), <βbeam > perp ~0.75%, <βbeam >ara ~0.75%)
<βbeam > ; based on the calculation with Monte Carlo technique.

Large beam pressure component is predicted in high Large beam pressure component is predicted in high ββ
<<ββkinkin > ;  3.6% (> ;  3.6% (ZZeffeff =2.5), <=2.5), <ββbeambeam >; 1.5%>; 1.5% (Cal.)(Cal.)

Beam pressure effects on MHD;To be resolve

Relatively low ne and low B0 leads to large ratio of pbeam .
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(Thu) I-21 by T.Seki

A scaling relation of the pulse length to the injected RF power was derived 
defining the critical temperature of divertor plates.

# Divertor temperature is a key parameter of the observation of 
intensive spark.

# Replacement of the improved divertor plates with good heat 
conductivity reduces the increment of divertor plate temperature. 

PRF = 1.1 MW (ICH;1 MW, ECH; 0.1 MW) for 800s
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Subjects on LHD Experiment to ReactorSubjects on LHD Experiment to Reactor

Under steady state operation
# Study of impurity transport  

(including development of He exhaust scenario)
# Development of suppression method of heat load 

to divertor

For high T scenario (conventional)
# Reduction of neoclassical transport in low ν 

(Demonstrate electron root under Ti~Te)
# High performance confinement in low ν and high β, 

under low beam pressure
(Confirm small effects of low-n MHD insta. & 
resistive g turbulence in low S and high β)
<β>>4% with B0 ~1T and/or <β>~5% with B0 >0.8T 

For high n scenario (innovative)
# Development of particle fueling method in the core 

with high n and relatively high T repeatedly
# Understandings of CDC mechanism to avoid it

(Study of ballooning, resistive MHD insta. and MHD 
equil. limit and so on)

# Study of transport property in stochastic regime

Two reactor operation 
scenario

; High T /High n

LHD designed target  
[Achievements]

Ion Temperature
Ti0 10 keV@ 2×1019m-3

[5.2 keV@ 1.6×1019m-3]
Electron Temperature

Te0 10 keV@ 2 ×

 

1019m-3

[10 keV @ 5×1018m-3]
Volume Averaged β

≥

 

5 % (1-2 T) [5.1 % (0.425T)]
Steady State Operation

1 hour (3MW)
[54m28s(490 kW)1.6GJ,  
800s(1.1MW)0.88GJ]

High Density 
[1.1×1021m-3 (with IDB)]
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1.  Demonstration of high ion temperature with confinement 
improvement similar to Internal Transport Barrier (ITB) 
accompanied by Impurity hole

2.  Achievement of high density ne (0) > 1021m-3 with Internal 
Diffusion Barrier (IDB) and  Extension of the high density 
operation regime with good energy confinement

3.  High beta  <β> = 5 % is maintained in quasi-steady state and 
Demonstration of the high beta scenario consistent with high 
density reactor scenario

4.  Demonstration of high input power and high heat load in 
Steady state; 1.1MW for 800s 

SummarySummary
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P1-30 Y. Nobuta Hydrogen Concentration and Crystal Structure of Carbon Films produced at the duct of Local Island Divertor in Large Helical 

Device
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P2-10 Y. Yoshimura 2nd Harmonic ECCD experiment using 84 GHz EC-wave in LHD
P2-13 T. Oosako Fast wave electron heating experiments focusing on competition between damping mechanisms on Large Helical Device
P2-17 G. Motojima Spectroscopic diagnostics for spatial density distribution of plasmoid by pellet injection in Large Helical Device
P2-23 H. Chikaraishi Voltage enhancement of the dc power supplies for dynamic current control of LHD superconducting coils
P2-28 M. Takeuchi Development of a High Speed VUV Camera System for 2-Dimensional Imaging of Turbulent Structures in LHD
P2-31 S. Kubo Collective Thomson Scattering Study using Gyrotron in LHD
P2-32 S. Muto Observation of space and energy distributions of high-energy electrons produced in ECH plasmas of LHD
P2-33 M. Goto Simultaneous measurement of electron and ion temperatures with heliumlike argon spectrum for LHD
P2-40 T. Yoshinaga Fluctuation observation by the microwave imaging reflectometry in LHD
P2-41 D. Kuwahara Development of 2-D Antenna Array for Microwave Imaging Reflectometry in LHD
P2-42 T. Oishi Development of beam emission spectroscopy system for the measurement of density fluctuations in LHD
P2-43 C. Suzuki Extension of the energy-resolved soft X-ray imaging system using two CCD cameras in LHD
P2-46 T. Minami Development of in-situ Density Calibration for Thomson Scattering Measurement by Microwave Reflectometry on LHD

I-11 M.Yoshinuma
Characteristic of an impurity hole in Large Helical Device

I-12 T. Morisaki
Topological Changes in Magnetic Flux Surfaces during IDB-SDC Discharge in LHD

I-21 T. Seki
Progress of Steady State Experiment in LHD

O-6 S.Murakami
Energetic ion confinement and lost ion distribution in heliotrons

O-7 A. Shimizu
The observation of potential fluctuation with 6 MeV Heavy Ion Beam Probe in LHD

LHD exp. related contributions (I/3, O/2, P/20)
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