

KSTAR CONSTRUCTION AND COMMISSIONING

Presented by Hyung-Lyeol Yang On behalf of the KSTAR team

December 09th, 2008 National Fusion Research Institute

Contents

- Introduction
- Brief History

Tokamak Construction

- Vacuum Vessel
- Cryostat
- SC Magnet
- SC Current Feeder System
- Thermal Shield
- Site Assembly

Ancillary System

- Helium Cryogenic Facility
- Other System

Commissioning and First Plasma

- Vacuum commissioning
- Cool-down commissioning
- SC magnet commissioning
- First plasma operation
- Troubleshoots
- Near Future Plan
- Summary

Introduction

- To develop a steady-state capable advanced superconducting tokamak
- To establish the scientific and technological base for an attractive fusion reactor

Elevation view of the KSTAR device

PARAMETERS	KSTAR	ITER	
Major radius, <i>R_o</i>	1.8 m	6.2 m	
Minor radius, a	0.5 m	2.0 m	
Elongation, κ	2.0	1.7	
Triangularity, δ	0.8	0.33	
Plasma volume	17.8 m ³	830 m ³	
Plasma surface area	56 m²	680 m ²	
Plasma cross section	1.6 m ²	22 m ²	
Plasma shape	DN, SN	SN	
Plasma current, I_P	2.0 MA	15 (17) MA	
Toroidal field, <i>B</i> ₀	3.5 T	5.3 T	
Pulse length	300 s	400 s	
β _N	5.0	1.8 (2.5)*	
Plasma fuel	H, D-D	H, D-T	
Superconductor	Nb ₃ Sn, NbTi	Nb₃Sn, NbTi	
Auxiliary heating /CE	~ 28 MW	73 (110) MW	
Cryogenic	9 kW @4.5K		

* M. Shimada, et al., Nuclear Fusion, vol. 47, pp. s1 (2007)

Brief History

VV Fabrication (2002. 01 – 2004. 06)

• Features

- Double Wall Structures with Inner and Outer Shells
- Toroidal Ring and Poloidal Rib
- Ports with Bellows
- Leaf Spring Style Support Structure

Major parameter

- Volume : 100 m³
- Ultimate Vacuum Pressure : 1 x 10⁻⁸ Torr
- Material : 316LN, 12 t
- Body C.X. Width and Height : 1.88 m, 3.387 m
- Torus Inner and Outer diameter : 2.22 m, 5.98

Fit-up of Sector 3

Site Welding of Sector 1,2

Pre-Assemble

Welding of Sector 1

Cryostat Fabrication (2002. 01 – 2004. 06)

Diameter (Inside)	8.80 m
Height	8.56 m
Weight	
- Lid	35 ton
- Cylinder	57 ton
- Base	47 ton
Vacuum Volume	450 m ³
Number of Port	102
Thickness	Lid: 33mm
	Cylinder: 30
	Base : 50 mm
Material	SA240 - 304L
Support	8 Beam

30 mm

mm

Cryostat Cylinder and Lid

Cryostat Base and Gravity Support

Lid & Cylinder Pre-Assemble

Vacuum Seal between Cylinder and Lid

Interface Check between Base and SC Bus-line Duct

Key Parameters of KSTAR SC Magnets ,

	TF coil	CS coil	PF Coil	
Conductor	Nb3Sn & Incoloy 908	Nb3Sn & Incoloy 908	Nb3Sn & Incoloy 908 (PF5) NbTi & 316 LN (PF6,7)	
No. of coil	16	4 pair	3 pair	
Total length	10.2 km	3.8 km	11.2 km	
Cooling channel of each coil	4	CS1 : 10, CS2 : 8 CS3 : 4, CS4 : 6	PF5 : 8 PF6 : 8, PF7 : 6	
Length of each channel	160 m	67 m	PF5 : 176 m PF6 : 315 m, PF7 : 285 m	
Cold mass	170 ton	60 ton	70 ton	
Operating temperature	5 K	5 K	5 K	
Coolant	4.5 K SHe P > 5.5 bar Mass flow rate > 300 g/s	4.5 K SHe P $>$ 5.5 bar Mass flow rate $^{\sim}150$ g/s	4.5 K SHe P $>$ 5.5 bar Mass flow rate \sim 150 g/s	

TF Coil Manufacturing (2000. 09 – 2006. 01)

Superconducting Strand

Heat Treatment Preparation

Chrome Plating

Cabling

CICC Jack Welding

CICC Spool

CICC Leak Test

Leak Test

Turn Insulation Taping

STS Joint Preparation

Ground Wrapping

VPI Die Assembly

No. of Coil: 16 T_{OP}: 4.5 K 8 Pancakes × 7 Turns F_{centering}: 15MN

VPI

SC Current Feeder System

9

Thermal Shield (2004. 05 – 2007. 04)

spacer

Material

Panel	stainless steel 316L
VVTS support	G-11, 316L nut
CTS panel support	G-11, 316L bolt & nut
PTS panel support	G-11, 316L nut
Insulators	G-11
Silver coating	VVTS, PTS : 10 μm thick
MLI	for CTS, DAM with polyethilen

Lid and Thermal Shield

Cylinder and Thermal Shield

VV Thermal Shield

Site Assembly (04. 01 – 07. 05)

Cryostat Support Beam

Jig System: Base Frame (2004, 01)

Cryostat Base (2004. 02)

Jig System : Bottom Rail

11

Gravity Support (2004.03)

Pre-install. of PF6L & PF7L

Install. of VV & VVTS Module (2005. 02)

Assembly Test with TF00

Re-construction of the Jig (2005, 03)

Completed Jig System

Start of TF Assembly (2005, 04)

Main Jig : Top Frame (2004, 03)

Completion of TF Assembly (2006. 05)

Jig System : Main Column

Install. of the VVTS Last Sector (2006. 06)

Site Assembly (04. 01 – 07. 05)

Install. of the VV Last Sector

Assembly of Cryostat

Assembly of VV Vertical Ports (2007. 05)

Install. of the PF6L & PF7L

Assembly of VV Ports

Finish of Tokamak Assembly (2007, 05)

Assembly of VV Support

Assembly of Cryostat Cylinder

Install. In-vessel Component for 1st Plasma (2007, 05)

Install. of PF6U & PF7U

Final Inspection in Cryostat

Install. Of PF5L (2006. 09)

Install. of Central Solenoid (2006. 10)

Connection between Tokamak and HRS (2008. 03)

Helium Cryogenic Facility (03.12 ~ 08.

• Distribution Box (#1)

- Cryogenic valve : 49 ea (Flowserve)
- SHe circulator : 2 EA, each 300 g/s (Max. 420 g/s)
- Cold compressor : 310 g/s, 4.3 K GHe, ball bearing
- Heat exchanger : 7 aluminum plate-fin type
- Thermal damper : 6 m³ filled with 4 m³ LHe

Cold Box

Cooling capacity : 9 kW@4.5 K equivalent

13

- Turbine : 6 oil-free static gas bearing
- Heat exchanger : 11 aluminum plate-fin type
- Adsorber : 80 K (Ar, O₂, N₂), 20 K (H₂, Ne)
- Cryogenic valve : 28 ea

Other Ancillary Systems

Ready for Commissioning

KSTAR device and initial ancillary systems was ready for the commissioning by February 2008!

Commissioning and First Plasma

Objectives

- To demonstrate that the system performances are in accordance with the design specification
- Target of first plasma over 100 kA, 100 ms

Vacuum	Cool-down	SC magnet	Plasma		
 VV base pressure 5 x 10⁻⁷ mbar Cryostat base pressure 1 x 10⁻⁴ mbar 	 Cool magnet system down to operating temp. TF/PF coil temp. < 5 K T. Shield temp. < 80 K 	 Charge all SC magnet system without quench Joint resistance < 5 nΩ TF current : 15 kA PF current : 4kA 	 To make plasma discharge reliable ECH pre-ionization Ip > 100 kA Pulse > 100 ms 		
KEY DATES	COMMISSIC	ONING PROGRESS			
Sep. 14, 2007	Tokamak construction comple	ted			
Feb. 29, 2008	Vacuum pumping started after final inspection				
Apr. 03, 2008	Magnet system cool-down started (9 kW refrigerator)				
Apr. 23, 2008	SC phase transition detected (TF coil at 18 K)				
Apr. 26, 2008	Cool-down completed (5 K, SHe 600 g/s)				
May 05, 2008	Joint resistance & coil insulation measured				
May 12, 2008	008 TF coil commissioning completed (15 kA, 8 hr)				
May 27, 2008	PF coil commissioning completed (4 kA)				
May 29, 2008	ECH pre-ionization test started (1.5 T, 84GHz)				
Jun. 13, 2008	First plasma achieved (107 kA, ECH assisted)				
Jul. 15, 2008	1st plasma campaign completed (pulse length over 800 ms)				
Jul. 20, 2008	Warm up started				

16

Vacuum Commissioning

Vacuum Vessel

- Target pressure < 5 x 10⁻⁷ mbar
- Achieved < 3 x 10⁻⁸ mbar
- Baking : ~ 100 °C
- Discharge Conditioning : GDC with H₂ & He (No boronization)

Cryostat

- Max pumping speed : 36,900 l/s
- Effective Cryostat volume : 240 m³

Pressure :

- $< 3 \times 10^{-6}$ mbar (room temp.),
- < 3 x 10⁻⁸ mbar (after cool-down
- Total helium leak : < 9 x 10⁻⁸ mbar
 I/s
 - (after cool-down)

Cool-down History

In April 26, KSTAR superconducting coils were successfully cooled-down.

18

• Temperature Distribution in the Thermal Shields

- The cryostat thermal shields were well cooled below 70 K.
- The maximum temperature of the CTS measured in 180 K on the blank cover plate without cooling lines.
- The temperature of the vacuum vessel shield was distributed in 90 K ~ 120 K

19

20

SC Transition

- The superconducting phase transition of the SC coils was clearly observed during the 1st cool-down.
- The SC transition of Nb3Sn and NbTi coils appeared at 18K and 9K, respectively.

Joint Resistance

- The voltage drops were measured at each SC bus-line, which consists of several numbers of electrical joints.
- The joint resistances were estimated by linear fitting to the measured V-I curves.
- All of the KSTAR lap joint resistances satisfied the design value of 5 $n\Omega$.

[The KSTAR lap joint of the SC bus-line]

Coil	Lap Joints [EA]	Total R [nΩ]	Average [nΩ /joint]	Design Value
TF	6	11.1	1.85	
PF1	7	15.6	2.23	
PF2	7	11.1	1.59	
PF3	12	20.3	1.69	
PF4	12	17.4	1.45	< 2 N M
PF5	12	25.2	2.1	
PF6	14	11.2	0.80	
PF7	8	4.11	0.51	

Pre-load Change of the CS Structure

- CS pre-load at room temp. was about 747 tons w hich is 58% of the required preload of 1300 tons
- However, there was additional pre-load release by 146 tons after cool-down
- It can be concluded that compression at coil interf aces can locally disappear due to cool-down.

Shell Number (IS-#, OS-#)

Shell No.	Preload (ton), @ RT		Preload (ton), after cool-down			Remaining	
	Inner	Outer	Sum	Inner	Outer	Sum	Total
No.1	33.4	67.2	100.6	-9.0	3.2	-5.8	94.9
No.2	29.8	61.5	91.3	-12.1	7.8	-4.3	87.0
No.3	31.3	62.7	93.9	-10.9	-9.3	-20.1	73.8
No.4	29.8	54.6	84.3	-5.3	-12.5	-17.7	66.6
No.5	32.0	62.3	94.3	-10.7	-13.2	-23.9	70.4
No.6	29.8	68.3	98.1	-10.3	-26.3	-36.6	61.5
No.7	31.5	61.2	92.7	-4.5	-16.9	-21.4	71.3
No.8	29.8	61.5	91.4	-1.3	-15.2	-16.4	74.9
Sum	247.3	499.3	746.6	-63.9	-82.4	-146.3	600.3

SC Magnet Commissioning

TF Magnet Commissioning

TF magnet & power supply test

- TF magnet system assembled assembly without individual cryogenic test
- Qualification test in each fabrication steps including strand Jc measurement after heat treatment
- •Operation results:
- •DC current operation :15 kA, 8hr
- • B_{TF} : 1.5 T (R : 1.6 ~1.8 m) for ECH
- Slow & fast discharge
- •Coil temperature rising < 0.1 K
- All TF magnets operated stable in thermal and mechanical aspects up to 15 kA
- •There was not any defects like quench during operation

TF coil 15 kA operation and stability in coil temp.

SC Magnet Commissioning

• PF Magnet Commissioning

- Single PF coil test :
 - Control gain tuning at 1 kA
 - Current control using PCS (within 4 kA)
 - Step response test
 - Blip control test records

•dI/dt : -98.9 kA/s, dB/dt : -16 T/s •Peak voltage : 5.4 kV

- Quench detection system tuning
- Safety interlock test

Successful PF coil control and field null formation

0 -50 3.0 Current (kA) 2.0 1.0 0.0 Current control for single PF coil Н -1.0 -6 PF Current (kA) 3.0 2.0 1.0 0.0

• Field Null Formation

Conventional & dipole mode

- Conventional mode :
 - Large null-size but low loop voltage
 - R=1.8 m
 - Larger current in PF3 & 4 coils
 - Favorable for initial breakdown
 - used for first plasma
- Dipole-like mode :
- Small null-size, but higher loop voltage
- R=1.7 m
 - Larger current in PF6 & 7 coils
- Effective for current ramp-up & feedback control
- •Used for feedback control

• In KSTAR, dipole-like mode was successfully developed.

Conventional & dipole-like mode comparison

ECH Pre-ionization

ECH pre-ionization

• First Plasma (#794, '08. 6 .13)

Pulse length : 210 ms

Feedback Control for Longer Plasma

Ip, Rp, Ne feedback control

 Feedback on plasma geometry parameters (Ip, Rp) enabled stable ohmic plasmas after ECH turned off

Plasma current (lp) : by PF1~5Plasma radial position (Rp) : by PF6,7

- Vertical position control (Zp) was limited due to serial connection of PF up/down coil.
- By gradual decreasing of plasma radius (Rp) control, plasma pulse was extended due to reduction of volt-seconds consumption
- Plasma could be sustained after ECH turn off
- Plasma pulse was up to 860 ms (under same volt seconds of 1.1 Wb)

Representative Shots

Troubleshoots

• Helium Leak in the Cryostat Thermal Shield @ Room Temp.

Small He leak was found in the cryostat thermal shield (CTS) during final inspection!

Leak Point : bellows in the CTS (repaired on 2007. 10. 18)

Troubleshoots

Cold Leak in PF Current Lead System during Cool-down

- The TF CLB maintained bellow 2.0E-7 mbar after cool-down, but the PF CLB pressure started to increase at 210 K due to a cold leak.
- The additional high vacuum pumps to pump-out helium was mounted in PF CLB.
- The final pressure was maintained bellow 1E-5 mbar and passed the high electrical potential break-down test (up to 6 kV).

PF3,4,5U Lap joint case remove

Near Term Plans

- After the first plasma achievement, the KSTAR device is under the maintenance period for the device inspection and for the system upgrades.
 - Investigation of Nb₃Sn superconductor under the severe dc and ac operation condition (2009)
 - Preparation for D-shape H-mode operation (2010)
 - Control and stabilization of high temperature plasma for steady-state operation especially using in-vessel control coils and ECCD.
 - Characterization of heating and current drive system in steady-state operation with relevant to ITER (5 GHz LHCD, NBI, etc)
 - Diagnostic system upgrade for the steady-state physics under the international collaboration ; Thomson scattering, Bolometers, ECE, XCS, etc.

In-Vessel Components (PFC & IVCC)

Neutral beam injection system development

Summary

- The successful commissioning and the first plasma achievement in KSTAR validates the design, engineering and construction aspects of the first major Nb₃Sn superconducting tokamak.
- KSTAR has achieved the first plasma on June 13 (Fri). Plasma current was ramped up to 133kA with rate of 0.8 MA/s, and well-controlled with duration up to 862 ms.
- It is remarkable that all the commissioning were achieved without any serious problems in the first attempt.
- By adopting the 2nd harmonic ECH pre-ionization, plasma start-up was possible under the loop voltage less than 3 V (R=1.68 m).
- KSTAR will be operated as an international collaboration device to contribute the science and technology for the future fusion reactor development including ITER

The speaker would like to thank all the KSTAR participants from Korea domestic and international collaboration partners who gave efforts to make successful construction and commissioning !

