

Integrated Performance and Critical Issues Towards Steady-State Operation in JT-60U

Y. Sakamoto and the JT-60U team Japan Atomic Energy Agency

18th International Toki conference (ITC18) on Development of Physics and Technology of Stellarator/Heliotrons en root to DEMO 9-12 December 2008, Toki Japan

Introduction

JT-60U =

JT-60U: One of the largest Tokamak.

High fusion performance was achieved so far.

- Record value of fusion triple product $: n\tau T = 1.53 \times 10^{21} \text{ m}^{-3} \text{skeV}$
- Record value of DT equivalent fusion gain: $Q_{DT}^{eq} = 1.25$

Towards steady-state operation :

High integrated performance is required.

<u>High values of</u> β_N , HH_{y2} (H₈₉), f_{BS}, f_{CD}, n_e/n_{GW}, fuel purity, P_{rad}/P_{heat}.

should be sustained for long time.

Other reactor conditions:

 q_{95} ~5, T_e ~ T_i , low momentum input, etc.

In JT-60U,

Weak Shear (WS) and Reversed Shear (RS) plasmas have been optimized towards high integrated performance.

Introduction (cont.)

JT-60U =

Critical issues for the integrated performance: – **High beta and high confinement**

- Enhancement of fusion performance directly.
- Compatibility of high density with high confinement
 - Large amount of particle fueling by gaspuffing degrades temperature in the core region.

-Long sustainment

• Demonstration of steady-state plasma with high non-inductive current drive fraction over characteristic time scales $(\tau_{\rm E}, \tau_{\rm R}, (\tau_{\rm W}))$ is required.

Contents

JT-60U =

Introduction

- 1. High beta operation above no wall beta limit.
- 2. High density operation with high confinement.
- 3. Long sustainment with high non-inductive current drive fraction.
- 4. Integrated performance towards DEMO

Summary

1. High beta operation above no wall beta limit

- Key operations:
 - Suppression of Neoclassical Tearing Mode (presented by A. Isayama on Tuesday)
 - Stabilization of Resistive Wall Mode (RWM) by toroidal rotation

High β_N ~3 above no wall beta limit was sustained for 5s on WS plasma

- For the RWM stabilization, plasma rotation should be kept above critical rotation.
- In some discharges, duration is limited by
 - Energetic particle driven wall mode (EWM), which is the coupling between energetic particle and RWM.
 - -RWM precursor, which reduces toroidal rotation and/or its shear.

High confinement RS plasmas with high β_N above no wall beta limit

- β_N~2.7, HH_{y2}~1.7, f_{BS}~90% were simultaneously achieved.
- q_{min} decreases towards stationary.
 - Inner q=3 surface moves inward,
 - Outer q=3 surface moves outward.
- V_T at q=3 is reduced.
- Destabilization of RWM seems to be attributed to decrease in toroidal rotation at q=3 surfaces.

Simultaneous achievement of high beta and high confinement

- Beta limit was improved by RWM stabilization, especially in RS plasma with keeping high confinement.
- High β_N expected in ITER was achieved with high confinement.
- In WS plasma, high β_N with high confinement was obtained without wall stabilization.
- Lower confinement in WS plasma with wall stabilization is attributed to the lack of strong central heating.

2. High density operation with high confinement

- Key operations:
 - Pellet injection in WS plasma
 - Wide ITB in RS plasma

High confinement was obtained at high density by pellet injection in WS plasma

Weak shear plasma (3.6T, 1.0MA, q_{95} ~6.5, δ ~0.45)

- Pellet injection (HFS(top)).
- HH_{y2}=1.05, β_N =2.2 and f_{BS}~60% at n_e/n_{GW}=0.7.
- Confinement was degraded with gas puffing at similar density.
- High confinement by pellet injection is attributed to keeping high pedestal temperature at similar pedestal density.

High density above n_{GW} in RS plasma

- Reversed shear plasma (2.5T, 1.0MA, q₉₅~6.1, δ~0.45)
- Large volume configuration for wide radius of density ITB.
- NB fueling only.
- HH_{y2}=1.3, β_N =2 and f_{BS}~70% at n_e/n_{GW}=1.1.

Compatibility of high density and high confinement

- JT-60U =
- High density operation region was obtained at n_e/n_{GW} ~ 1 with high confinement, especially in RS plasmas.
- In WS plasmas, high density operation region was extended by pellet injection or impurity seeding with small degradation of confinement.
- In the cases of impurity seeding (Ar or Ne), high radiation loss fraction (f_{rad} > 0.9) was also obtained.
- Furthermore, in the wall saturated condition, HH_{y2} ~0.95 at n_e/n_{GW} ~0.7.

3. Long sustainment with high noninductive current drive fraction

- Key operations:
 - NTM suppression in WS plasma
 - ITB control in RS plasma

f_{BS}~45% sustained for ~5.8s (~2.8τ_R) under nearly full CD in WS plasma

Weak shear plasma (2.4T, 1.0MA, q_{95} ~4.5)

- Removal of q=1.5 for 3/2 NTM suppression by p(r) & j(r) optimization using FB control of stored energy and injection timing of NBs.
- β_N ~2.4, f_{BS}~45% and HH_{v2}~1 for 5.8s $j_{BS}+j_{BD} = 90-100\%$ is close to j_{tot}^{mea} Nearly full CD ~5.8 s (~26t_r, ~2.8t_p) 20 E44104 8 6 (keV) (MW) ₁₀ 2 0 3 2 3 p q (V)

f_{BS}~75% sustained for ~7.4s (~2.7τ_R) under nearly full CD in RS plasma

Reversed shear plasma (3.4T, 0.8MA, q₉₅~8.3)

- $\beta_N \sim 1.7$ & $f_{BS} \sim 75\%$ were kept constant by feedback control of stored energy.
- Although q_{95} is high, stationary condition of p(r) & j(r) was confirmed.

• $j_{BS}+j_{BD} = 95\%$ is close to j_{tot}^{mea} \longrightarrow Nearly full CD

Long sustainment of high f_{BS} plasmas under nearly full-CD

- By optimizing high confinement WS and RS plasmas, sustained duration of high f_{BS} is extended under the nearly full-CD condition.
- High f_{BS} expected in ITER steady state scenario and DEMO reactor is sustained for longer than current diffusion time scale (τ_R).
- Durations are limited by pulse length of NB or NNB.

4. Integrated performance towards DEMO reactor

High integrated performance achieved in WS and RS plasmas

- Some parameters are not satisfied simultaneously
- Long sustainment

: Remaining issues

JT-60SA will bridge large gaps between DEMO and ITER

- SlimCS: Economical & compact DEMO reactor with high β_N and f_{BS} .
- Large gaps in design parameters between SlimCS and ITER, especially β_N , f_{BS} , P_{rad}/P_{heat} .
- JT-60SA will address key issues for DEMO, as satellite tokamak of ITER.
 - Demonstration of high beta operation by RWM control coils.
 - Heat and particle control with divertor pumping capability.
- ITER scenario can be improved by results of JT-60SA.

JT-60U =

JT-60U tokamak optimized WS and RS plasmas towards steady-state operation of tokamak and demonstrated

- High beta and high confinement simultaneously
- Compatibility of high density with high confinement
- Long sustainment

High integrated performances were achieved in both plasma regimes.

- There are still remaining issues for high integrated performance and long sustainment.
- JT-60SA will address the remaining issues, as satellite tokamak of ITER.