Key Physics & Technology Issues for Compact Stellarator Power Plants

Farrokh Najmabadi UC San Diego

18th International Toki Conference December 9-12, 2008 Toki, Japan

Key R&D Issues – Observations from the ARIES-CS study

- ARIES-CS study was completed in 2007. Final report is published in J. Fusion Science & Technology 2008.
- ARIES CS was the first integrated design of a compact stellarator; designs was pushed in many areas to uncover difficulties.
- Many issues were identified.

Goals of the ARIES-CS Study

- Can compact stellarator power plants be similar in size to advanced tokamak power plants?
 - Physics: Reduce coil aspect ratio, A_c = <R>/Δ_{min} while maintaining "good" stellarator properties (focused on QA configuration)
 - Engineering: Reduce the required minimum coil-plasma distance.
- What is the impact of complex shape and geometry?
 - Complex 3-D analysis (e.g., CAD/MCNP interface for 3-D neutronics)
 - Complexity-driven constraints (e.g., superconducting magnets)
 - Configuration, assembly, and maintenance
 - ✓ Manufacturability (feasibility and Cost)

Optimization of NCSX-Like Configuration: Improving α Confinement

- A bias was introduced in the magnetic spectrum in favor of B(0,1) and B(1,1):
- ✓ A substantial reduction in α energy loss (from ~18% to ~ 4-5%) is achieved.

- ➤ A series of coil design with A_c=<R>/Δ_{min} ranging 6.8 to 5.7 produced.
 - ✓ Large increases in B_{max} / B_{o} only for A_{c} < 6.

A_c=5.9

For <R> = 7.75m: $\Delta_{min}(c-p)=1.32 \text{ m}$ $\Delta_{min}(c-c)=0.8 \text{ m}$

Example: MHH2

✓ Low plasma aspect ratio (A_p ~ 2.5) in 2 field period.
 ✓ Excellent QA, low effective ripple (<0.8%), low α energy loss (≤ 5%).

✓ Less complex coils with a relatively large coil to coil spacing

Typical configuration optimization process includes criteria on transport, equilibrium, stability, etc. Each criterion is assigned a <u>threshold</u> and a <u>weight</u> in the optimization process. In-depth understanding of relative importance of these criteria on overall performance system is needed.

- > Understanding of β limits in stellarators is critical.
- Configurations with reduced α-particle loss should be developed.
- Demonstration of profile control in compact stellarators (e.g., QA) to ensure the achievement and control of the desired iota profile, including bootstrap current effects.

Goals of the ARIES-CS Study

- Can compact stellarator power plants be similar in size to advanced tokamak power plants?
 - ✓ Physics: Reduce coil aspect ratio, A_c = <R>/∆_{min} while maintaining "good" stellarator properties (focused on QA configuration)
 - **Engineering:** Reduce the required minimum coil-plasma distance.
- What is the impact of complex shape and geometry?
 - Complex 3-D analysis (e.g., CAD/MCNP interface for 3-D neutronics)
 - Complexity-driven constraints (e.g., superconducting magnets)
 - Configuration, assembly, and maintenance
 - ✓ Manufacturability (feasibility and Cost)

Minimum Coil-plasma Stand-off Can Be Reduced By Using Tapered-Blanket Zones

Major radius can be increased to ease engineering difficulties with a small cost penalty

•••	Goals of the ARIES-CS Study
	Can compact stellarator power plants be similar in size to advanced tokamak power plants?
	 ✓ Physics: Reduce coil aspect ratio, A_c = <r>/∆_{min} while maintaining "good" stellarator properties (focused on QA configuration)</r>
	 Engineering: Reduce the required minimum coil-plasma distance.
	What is the impact of complex shape and geometry?
V	 Complex 3-D analysis (e.g., CAD/MCNP interface for 3-D neutronics)
	 Complexity-driven constraints (e.g., superconducting magnets)
	 Configuration, assembly, and maintenance
	 Manufacturability (feasibility and Cost)

First ever 3-D modeling of complex stellarator geometry for nuclear assessment using CAD/MCNP coupling

- Detailed and complex 3-D analysis is required for the design
 - Example: Complex plasma shape leads to a large non-uniformity in the loads (e.g., peak to average neutron wall load of 2).

Distribution of Neutron wall load

Coil Complexity Impacts the Choice of Superconducting Material

Strains required during winding process is too large.

- ✓ NbTi-like (at 4K) \Rightarrow B < ~7-8 T
- ✓ NbTi-like (at 2K) \Rightarrow B < 9 T, Potential problem with temperature margin
- ✓ Nb₃Sn \Rightarrow B < 16 T, Conventional technique does not work because of inorganic insulators

Option 1: Inorganic insulation, assembled with magnet prior to winding and capable to withstand the heat treatment process.

Option 2: conductor with thin cross section to get low strain during winding. (Low conductor current, internal dump).

Option 3: HTS (YBCO), Superconductor directly deposited on structure.

Coil Complexity Dictates Choice of Magnet Support Structure

- It appears that a continuous structure is best option for supporting magnetic forces.
- Net force balance between field periods (Can be in three pieces)
- Superconductor coils wound into grooves inside the structure.

Components are replaced Through Ports

Modules removed through three ports using an articulated boom.

Drawbacks:

- ✓ Coolant manifolds increase plasma-coil distance.
- \checkmark Very complex manifolds and joints
- ✓ Large number of connect/disconnects

Manufacturing of blanket modules is challenging

Dual coolant with a self-cooled PbLi zone and He-cooled RAFS structure and SiC insert:

Impact of Ferritic material on the stellarator configuration is unknown.

Pipe

Shield

Plug

Heat/particle flux on divertor was found by following field lines outside LCMS.
 Because of 3-D nature of magnetic topology, location & shaping of divertor plates require considerable iterative analysis.

Top and bottom plate location with toroidal coverage from -25° to 25°.

Diverter Plates

Diverter Shield

alpha (Toroidal)

T-Tubes divertor module is based on W Cap design (FZK) extended to mid-size (~ 10 cm) with a capability of 10 MW/m²

• • • In Summary:

- > Understanding of β limits in stellarators is critical.
- > Configurations with negligible α -particle loss should be developed.

Configuration, assembly, and maintenance drives the design

- Component replacement through ports appears to be the only viable method. This leads to many non-identical modules, large coolant manifolds (increased radial build), large number of connects and disconnects, complicated component design for assembly disassembly.
- 3-D analysis of components is required for almost all cases, New tools may have to be developed for component optimization.
- Feasibility of manufacturing of component should be included in the configuration design as much as possible. For ARIES-CS, manufacturing of many components is challenging and/or very expensive.
 - Stellarator configuration optimization should include "strong" penalties for complex plasma (and coil) shape.

Thank you! Any Questions?