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Key R&D Issues — Observations
from the ARIES-CS study

» ARIES-CS study was completed in
2007. Final report is published in J.
Fusion Science & Technology 2008.

» ARIES CS was the first integrated
design of a compact stellarator;
designs was pushed in many areas to
uncover difficulties.

» Many issues were identified.
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@ Goals of the ARIES-CS Study

» Can compact stellarator power plants be similar in size to
advanced tokamak power plants?

[ v Physics: Reduce coil aspect ratio, A, = <R>/A_,, while
maintaining “good” stellarator properties (focused on QA
configuration)

v" Engineering: Reduce the required minimum coil-plasma
distance.

» What is the impact of complex shape and geometry?

v" Complex 3-D analysis (e.g., CAD/MCNP interface for 3-D
neutronics)

v" Complexity-driven constraints (e.g., superconducting magnets)
v Configuration, assembly, and maintenance
v" Manufacturability (feasibility and Cost)




Optimization of NCSX-Like Configuration:
Improving a Confinement

» A bias was introduced in the magnetic spectrum in favor of B(0,1)

and B(1,1):

v A substantial reduction in o energy loss (from ~18% to ~ 4-5%) is
achieved.
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» o loss may be too high (localized heating and exfoliation concerns)
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Optimization of NCSX-Like Configuration:
Increasing Plasma-Colil Separation

» A series of coil design with A _.=<R>/A
produced.

v" Large increases in B

ranging 6.8 to 5.7

min

/B, only for A, < 6.

max

N3ARE

A=5.9

For <R>=7.75m:
Amin(C-p)=1.32 m
Amin(c-€)=0.8 m




Many attractive QA configurations
exists!

Example: MHH2
v Low plasma aspect ratio (A, ~ 2.5) in 2 field period.
v Excellent QA, low effective ripple (<0.8%), low o energy
loss (£ 5%) .
v"Less complex coils with a relatively large coil to coil spacing




Stellarator Configuration Space is
rich with interesting configurations

» Typical configuration optimization process includes criteria
on transport, equilibrium, stability, etc. Each criterion is
assigned a threshold and a weight in the optimization
process. In-depth understanding of relative importance of
these criteria on overall performance system is needed.

» Understanding of B limits in stellarators is critical.

» Configurations with reduced a-particle loss should be
developed.

» Demonstration of profile control in compact stellarators
(e.g., QA) to ensure the achievement and control of the
desired iota profile, including bootstrap current effects.
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plasma Stand-off Can Be

Reduced By Using Tapered-Blanket Zones
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Major radius can be increased to ease
engineering difficulties with a small cost
penalty
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First ever 3-D modeling of complex

stellarator geometry for nuclear
assessment using CAD/MCNP coupling

» Detailed and complex 3-D analysis is required for the design
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Example: Complex plasma shape leads to a large non-uniformity in the
loads (e.g., peak to average neutron wall load of 2).
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Coil Complexity Impacts the Choice

of Superconducting Material

» Strains required during winding process is too large.
NbTi-like (at4K) = B<~7-8T
NbTi-like (at 2K) = B <9 T, Potential problem with temperature margin

Nb,;Sn = B <16 T, Conventional technique does not work
because of inorganic insulators

Option 1: Inorganic insulation, assembled
with magnet prior to winding and capable
to withstand the heat treatment process.

Option 2: conductor with thin cross
section to get low strain during winding.
(Low conductor current, internal dump).

Structure
Insulation SC strands

A d o R g

He coolant High RRR Support plate

Option 3: HTS (YBCO), Superconductor directly deposited on structure.




Coil Complexity Dictates Choice of
Magnet Support Structure

» It appears that a continuous structure is
best option for supporting magnetic forces.

» Net force balance between field periods
(Can be in three pieces)

» Superconductor coils wound into grooves
inside the structure.

Coil dimensions Cover plate 2 cm thick
19.4cm x 74.3 cm
Filled with cable

v
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» Modules removed through
three ports using an
articulated boom.

Maohile
Transporter

Emergency
Egress

Drawbacks:

v" Coolant manifolds increase plasma-coil distance.
v Very complex manifolds and joints

v’ Large number of connect/disconnects




Manufacturing of blanket modules is
challenging

» Dual coolant with a self-cooled PbLi zone and He-cooled
RAFS structure and SiC insert:
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» The complex internal components should be manufactured
with the desired 3-D shape.

» Impact of Ferritic material on the stellarator configuration is
unknown.




R A highly radiative plasma is needed
for divertor operation

» Heat/particle flux on divertor was found by following field lines outside LCMS.

Because of 3-D nature of magnetic topology, location & shaping of divertor
plates require considerable iterative analysis.
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» T-Tubes divertor module is based on W Cap
design (FZK) extended to mid-size (~ 10 cm)
with a capability of 10 MW/m?




O In Summary:

» Understanding of B limits in stellarators is critical.
» Configurations with negligible a-particle loss should be developed.

» Configuration, assembly, and maintenance drives the design

v" Component replacement through ports appears to be the only viable method.
This leads to many non-identical modules, large coolant manifolds (increased
radial build), large number of connects and disconnects, complicated component
design for assembly disassembly.

v 3-D analysis of components is required for almost all cases, New tools
may have to be developed for component optimization.

v" Feasibility of manufacturing of component should be included in the
configuration design as much as possible. For ARIES-CS, manufacturing
of many components is challenging and/or very expensive.

» Stellarator configuration optimization should include “strong”
penalties for complex plasma (and coil) shape.




Thank you!
Any Questions?
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