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In recent tokamak experiments it is found that so-called stochastic diffusion theory based on the “field line
diffusion” overestimates the radial energy transport in collisionless edge plasma affected by resonant magnetic
perturbations, though the perturbations induce chaotic behavior of the field lines. These results imply that the
conventional modeling of the edge transport should be reconsidered for covering the range from lower to higher
collisionalities. It is required to construct the modeling extracting information contributing to the transport in
macro-scale from kinetic motions in micro-scale. A simulation study of collisional transport in the ergodic region
is attempted for estimating the transport coefficients according to the modeling. By using a drift kinetic equation
solver without the assumption of nested flux surfaces (the KEATS code), it is possible to execute the estimation.
In this paper, we report the modeling constructed from the viewpoint of stochastic approach and the simulation
study of the ion transport in the ergodic region under the assumption of neglecting effects of an electric field and
neutrals.
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1 Introduction

In recent tokamak experiments it is found that so-
called stochastic diffusion theory based on the “field line
diffusion” [1] overestimates the radial energy transport in
the edge added resonant magnetic perturbations (RMPs)
[2, 3]. This fact is discovered in the experiments of edge
localized modes (ELMs) suppression by adding RMPs to
the edge plasma. (The idea of suppressing the ELMs by us-
ing RMPs has been proposed in Ref. [4].) When the RMPs
induce a chaotic behavior in the field lines, the theory pre-
dicts that a thermal diffusivity is given by “diffusion of the
field lines.” In collisionless edge ergodized plasma, the ex-
perimental thermal-diffusivity χexp = −qr/(n∇T) is incon-
sistent with the prediction of the stochastic diffusion theory
χql; i.e.χexp

e /χ
ql
e ≪ 1/10 for the electron thermal diffusiv-

ity [3], whereqr is the radial energy flux,n the density, and
T the temperature measured in the experiments. The above
experimental results imply that the conventional modeling
of transport in the ergodic region should be reconsidered
in torus plasmas, and kinetic modeling is required for un-
derstanding stochastic transport in the ergodic region [5].

For construction of kinetic modeling, statistical prop-
erties of the guiding center orbits in the ergodic region
are previously studied in the monoenergetic test-particle
simulations in detail [6]. The doubt on the validity of
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the stochastic diffusion theory for the collisionless limit
has been reported; i.e. guiding center orbits in the ergodic
region are not Brownian for lower-collisionality. On the
other hand, for the collisional limit, the radial behavior of
the guiding center orbits is numerically observed to be a
standard diffusion process. These results mean that it is
not a trivial problem whether the transport coefficients in
the ergodic region can be always estimated by tracing mo-
noenergetic test-particle orbits. We should note that the
statistical properties of the neoclassical radial diffusion for
the range from lower to higher collisionalities in a mag-
netic configuration having nested flux surfaces are con-
firmed through direct comparison with a Brownian pro-
cess in configuration space given by tracing monoenergetic
test-particle orbits [7]. It is important to construct the mod-
eling extracting information contributing to the collisional
transport in macro-scale from the kinetic motions in micro-
scale, even if the guiding center orbits themselves are non-
Brownian. The modeling of the transport should be recon-
sidered from the viewpoint of stochastic approaching the
statistics of kinetic motions exposed to noise caused by the
RMPs.

In order to estimate transport coefficients in the er-
godic region, we develop a new transport simulation code
without the assumption of nested flux surfaces; the code
is named “KEATS” [8, 9, 10]. The code is programmed
by expanding the well-known Monte-Carlo particle simu-
lation scheme based on theδ f method [11, 12, 13]. By
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using the KEATS code, it is possible to execute the estima-
tion.

In this paper, we discuss the modeling of the trans-
port exposed to noise caused by chaotic behavior of field
lines, and apply the KEATS code to a torus plasma having
the ergodic region for estimating the transport coefficients
(in particular, thermal diffusivity). Here, because of a lim-
ited computational-time we treat ions (protons) in higher-
collisionality for our numerical study of the transport in the
ergodic region. The modeling and simulations are useful
for understanding transport properties in the ergodic region
generated in the edge of a helical plasma. The details of the
modeling are discussed in Sec. 2. In Sec. 3, the simulation
results are shown. Finally, summary is given in Sec. 4.

2 Modeling of Collisional Transport

First, we consider the collisional transport in macro-
scale under the assumption of neglecting effects of chaotic
field lines, an electric field, and neutrals. For a fluid
quantity u(t, x), i.e. the densityu = n(t, x) or energy
u = (3/2)nT, the fluid equation is given as [14, 15]

∂u(t, x)
∂t

+∇· (Vu)− 1
2
∇· (D · ∇u)+νu = h(t, x), (1)

where∇ = ∂/∂x, a position in Euclidean spacex ∈ R3,
time t ∈ [0, t1), the initial conditionu(0, x) = ϕ(x) at t = 0,
and the boundary conditionu(t, x) = g(t, x) at the bound-
ary. Here, the mean velocityV and the diffusion coefficient
D = (Di j ) are assumed to be given functions oft andx.

The above fluid equation is the initial-boundary value
problem (written fort replaced byt1 − t):

(L + ν∗)u+
∂u
∂t
= h∗(t, x) in Q =M× [0, t1), (2)

u(t1, x) = ϕ(x) onM, (3)

u(t, x) = g(t, x) onS, (4)

whereM is a bounded domain with the boundary∂M,S =
∂M× [0, t1), and

Lu :=

{
1
2

Di j ∂2

∂xi∂x j
+ Vi

∗
∂

∂xi

}
u, (5)

Vi
∗ = −Vi +

1
2
∂Di j

∂x j
, (6)

ν∗ = −ν −
∂Vi

∂xi
, (7)

h∗ = −h. (8)

The solution of Eqs. (2)-(4) is given as [16]

u(t, x) = Et,xg(τ, ξ(τ)) exp

[∫ τ

t
ν∗(s, ξ(s))ds

]
χτ<t1

+Et,xϕ(ξ(T)) exp

[∫ τ

t
ν∗(s, ξ(s))ds

]
χτ=t1

−Et,x

∫ τ

t
h∗(s, ξ(s)) exp

[∫ s

t
ν∗(λ, ξ(λ))dλ

]
ds, (9)

whereEt,x is the expectation operator given by the diffu-
sion process:

dξi(t) = σi
j(t, ξ(t))dw

j(t) + Vi
∗(t, ξ(t))dt (10)

havingDi j = σi
kg

kℓσ
j
ℓ
, gkℓ is the metric,w(t) is a Brownian

motion,χA is the indicator function of a setA, τ is the first
timeλ ∈ [t, t1) thatξ(λ) leavesM if such a time exists and
τ = t1 otherwise. Therefore, the transport in macro-scale is
expressed by using the diffusion process given as Eq. (10).

The diffusion process given as Eq. (10) is originally
caused from the collision operator. Let us take the follow-
ing collision operatorC( f ):

C( f ) = νcol
∂

∂u
·
{
u f + v2th

∂ f
∂u

}
, (11)

where f = f (t, x, u) = fM(t, x, u; V(t, x)) + δ f (t, x, u) is
a distribution function expressing statistics of kinetic mo-
tions in micro-scale,fM is a shifted Maxwellian back-
ground,νcol = νcol(x) is the collision frequency,vth the
thermal velocity, (V + u) the velocity of a guiding center,
andV = V(t, x) the mean velocity [17]. The operator (11)
is simpler, but is used only to get a rough idea of collisional
effects [18].

We consider the motion of a guiding center along a
field line for estimation of radially spreading the guid-
ing centers in a perturbed field. The guiding center mo-
tion exposed to the collisions (11) is given as an Ornstein-
Uhlenbeck process:

dx(t) = (V + u)dt, (12)

du(t) = σdw(t) − νcoludt, (13)

where a perturbation field is neglected in the above equa-
tions,V = V∥b, b = B/B the unit vector along a field line,
σ = vth

√
νcol, andB the unperturbed magnetic field. Here,

the effects of toroidal and helical ripples are neglected for
simplicity. Here,vth andνcol are assumed to be constant.

One may consider that effect of a perturbation field
on the guiding center motion is interpreted as noise on the
motion. If the effect is expressed as a linear operatorÑ(V+
u), then instead of Eq. (12) the motion of a guiding center
is described as

dζ =
{
(V + u) + Ñ(V + u)

}
dt. (14)

After sufficient exposure to the collisionst ≫ 1/νcol

(νcol → ∞ andvth/
√
νcol = const.), the stochastic process

ζ(t) (written for t replaced byt1 − t) becomes

dζ(t) ≈ vth√
νcol

(1+ Ñ) · dw(t) − (V + Ṽ)dt, (15)

whereṼ = ÑV, andÑ = (Ni
j) is assumed to be a continu-

ous function int, together with its firstt-derivative. Here,
the noise expressed asṼ andÑ is bounded, i.e. there exist
V0 andN0 satisfying|Ṽ| ≤ V0 and|Ni

j | ≤ N0.
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From Eqs. (9) and (10), the collisional transport in
macro-scale is described as diffusion phenomenon, thus
the processζ(t) is projected onto a diffusion process:

lim
ϵ→0+

1
ϵ

E
[
ζ i

t−ϵ,x(t) − xi
∣∣∣∣Pt−ϵ

t

]
= U i

∗(t, x), (16)

lim
ϵ→0+

1
ϵ

E
[{
ζ i

t−ϵ,x(t) − xi
}

×
{
ζ

j
t−ϵ,x(t) − x j

}∣∣∣∣Pt−ϵ
t

]
= D̃i j (t, x), (17)

whereζ t−ϵ,x(t) is a pathζ(t) satisfyingζ(t − ϵ) = x, and
U∗ is the mean velocity affected by the noise:U∗ =
−{V + E[Ṽ|Pζt ]}. Here,E[ · |Pt−ϵ

t ] denotes the conditional
expectation with respect toPt−ϵ

t , and theσ-algebraPt−ϵ
t

is generated by the set of sample paths{ζ t−ϵ,x(s); t − ϵ ≤
s ≤ t} [19]. Note thatE[ · |Pt−ϵ

t ] is Pt−ϵ
t measurable, i.e.

limϵ→0+ E[ · |Pt−ϵ
t ] is a function oft and x. The diffusion

process extracted from the processζ(t) is given as

dξi(t) = σ̃i
j(t, ξ(t))dw

j(t) + U i
∗(t, ξ(t))dt, (18)

i.e., the diffusion in velocity space for micro-scale becomes
the diffusion in configuration space for macro-scale, see
the first term in the right hand side of Eq. (18), whereD̃i j =

σ̃i
kg

kℓσ̃
j
ℓ
. In this case, the partial differential operatorL

given by the diffusion processξ(t) is derived as

−∂u(t, x)
∂t

= lim
ϵ→0+

u(t − ϵ, x) − u(t, x)
ϵ

= lim
ϵ→0+

1
ϵ

E
[
u(t, ξt−ϵ,x(t)) − u(t, x)

]
=

1
2

D̃i j (t, x)
∂2u(t, x)
∂xi∂x j

+ U i
∗(t, x)

∂u(t, x)
∂xi

, (19)

whereu(t−ϵ, x) = E[u(t, ξt−ϵ,x(t))] andE[u(t, x)] = u(t, x).

3 Results of KEATS Code

For estimation of the radial fluxes in the ergodic re-
gion, we use a magnetic configuration which is formed by
adding RMPs into a simple tokamak field having concen-
tric circular flux surfaces, where the major radius of the
magnetic axisRax = 3.6 m, the minor radius of the plasma
a = 1 m, and the magnetic field strength on the axisBax =

4 T. The unperturbed magnetic field is approximately given
as BR = −(BaxRax/q)Z/R2, Bφ = −BaxRax/R, and BZ =

(BaxRax/q)(R− Rax)/R2 [20], whereq is the safety factor
andq−1 = 0.9 − 0.5875(r/a)2, andr =

√
(R− Rax)2 + Z2.

The RMPs causing resonance with, for example, the ra-
tional surfaces ofq = m/n = 3/2,10/7,11/7 are numeri-
cally given by using the perturbation fieldδB = ∇ × (αB)
[6], and order of the strength isO(|δBr/Bt|) ∼ 10−1. Here,
the functionα, which has unit of length, is used to repre-
sent the structure of perturbed magnetic field;α(R, φ,Z) =∑

m,nαmn(ψ(R,Z)) cos{mθ(R,Z) − nφ + φmn}, whereψ is a
label of magnetic flux surfaces andφmn is the phase. The

Fig. 1 Poincaŕe plots of the magnetic field lines on a poloidal
cross section for case of∆δB = δB/δB(0) = 1, where
δB = |δB| is the strength of RMPs andδB(0) is the
strength of the RMPs in the case b) of Fig. 2. The er-
godic region is placed betweenr/a = 0.5 and 0.7, where
r =

√
(R− Rax)2 + Z2 andRax = 3.6 m.

Poincaŕe plots of the magnetic field lines on a poloidal
cross section are shown in Fig. 1. The ergodic region ap-
pears inr/a ≈ 0.7∼ 1. In the KEATS code, the number of
marker particles isNMP = 16,000, 000.

To investigate effect of the existence of the ergodic re-
gion on the transport phenomena, we evaluate the energy
flux of ions (protons)qi , because the evaluation of elec-
tron energy flux is highly time-consuming. The calculation
time for ions is about 40 hours in real time to get the re-
sult with sufficient numerical-accuracy by using the vector-
parallel supercomputer SX-7, and the calculation time for
electrons is estimated to be about 40 (≈

√
mi/me) times

longer than the one for ions if the number of PEs (process-
ing elements) is fixed, where 64 PEs are used in this paper.

The evaluation of the ion energy flux is carried out in
the configuration having lower temperatureTedge ∼ 100
eV at a center of the ergodic region. The temperature
profile is given asTi = Tax{0.02 + 0.98 exp[−4(r/a)2.5]}
with Tax = 250 eV, which neglects the existence of the
ergodic region. The density profile is set homogeneous,
ni = const.= 1× 1019 m−3. The radial profiles of thermal
diffusivities estimated from the KEATS computations are
shown in Fig. 2, where from the modeling of the transport
given in the previous section the thermal diffusivity can be
estimated asχi

eff = qr/(ni |∂Ti/∂r |), andqr the radial energy
flux evaluated by the KEATS code. Here, the radial mean
velocity Vr is neglected because of|Vr/vth| ≪ 1. For sim-
plicity, the radial energy fluxes are given by neglecting the
existence of the ergodic region, because we have no mag-
netic coordinate system including several magnetic field
structures as the core and ergodic regions. The energy flux
qi is averaged over concentric circular shell region in the
whole toroidal angles as if there were nested flux surfaces.
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Fig. 2 Radial profile of the ion thermal diffusivity χr for a) no
RMP (black squares), b)∆δB = δB/δB(0) = 1 (red cir-
cles), c)∆δB = 1.5 (green triangles), and d)∆δB = 2 (blue
lozenges), whereδB = |δB| is the strength of RMPs and
δB(0) is the strength of the RMPs for the case b). Ra-
dial profile of temperature is fixed asTi = Tax{0.02 +
0.98 exp[−4(r/a)2.5]} with Tax = 250 eV (black solid
line), wherer =

√
(R− Rax)2 + Z2 andRax = 3.6 m. The

center of the ergodic region is located atr/a ≈ 0.6.

Here, in the KEATS computations the energy flux is given
as [9, 10]

qi(x) =
∫

d3v
miv2

2
(u∥ + ud)δ f , (20)

where· · · means the time-average, and the averaging time
is longer than the typical time-scale ofδ f (both the orbit
and collision times). It is confirmed that the energy flux
evaluated by the KEATS code becomes quasi-steady after
a sufficient time. The radial profiles of the thermal diffusiv-
itiesχr in Fig. 2 show that the diffusivity in the ergodic re-
gion is proportional to the square of the strength of RMPs.

4 Summary

We have been developing the modeling of collisional
transport to study the transport phenomena in the ergodic
region. For estimation of transport coefficients, we apply
the KEATS code to ions in the ergodic region disturbed by
resonant magnetic perturbations under the assumption of
neglecting effects of an electric field and neutrals, and find
that the coefficients are proportional to the square of the
strength of RMPs.

For a lower-collisionality case, the transport is
strongly affected by the existence of the ergodic region.
The strong particle and energy fluxes cause the time-
evolution of the background described by the fluid equa-
tions. Further simulation study of the transport by solv-
ing simultaneously both the kinetic and fluid equations

is needed for understanding of the collisionless edge er-
godized plasma; the interim report of developing the
KEATS code is written in Ref. [9].
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