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High-beta toroidal equilibria with flow in reduced fluid models

Atsushi ITO and Noriyoshi NAKAJIMA
National Institute for Fusion Science,322-6 Oroshi-cho, Toki 509-5292, Japan

A reduced set of equations for high-beta tokamak equilibria with flow comparable to the poloidal sound
velocity are solved analytically for the single-fluid MHD case and numerically for the case of two-fluid model
with ion Finite Larmor radius (FLR). The analytical solution for single-fluid MHD equilibria shows that the shift
of the magnetic axis from the geometric axis is enhanced by a slightly super-poloidal-sonic flow and it produces
a forbidden region of equilibrium by the poloidal-sonic flow. Numerical analysis shows that there are regular
solutions for the two-fluid model with FLR that are singular for the single-fluid and Hall MHD models, and that
the solutions depend on the sign of the B flow compared to that of the ion diamagnetic flow.
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Introduction

In magnetically confined plasmas, equilibrium flows may
suppress instability and turbulent transport to give rise to
improved confinement modes where hjgfs achieved. In
such equilibria, the scale lengths characteristic of micro-
scopic dfects not included in single-fluid magnetohydro-
dynamics (MHD) cannot be neglected. Small scéfects

on flowing equilibria due to the Hall current have been
studied with two-fluid or Hall MHD models [1]. However,
these models are consistent with kinetic theory only for
cold ions. A consistent treatment of hot ions in a two-fluid
framework must include the ion gyroviscosity and other fi-
nite Larmor radius (FLR) féects. In the fluid formalism

of collisionless magnetized plasmas, theffleas are in-
corporated by means of asymptotic expansions in terms of
the small parametef ~ pj/a, wherep; is the ion Larmor
radius andh is the macroscopic scale length. With a slow
dynamics orderingy ~ 6wy, wherev andvy, are the flow
and thermal velocities respectively, the ion FLR terms [2]
are much simplified in the reduced models for large-aspect-
ratio, highg tokamaks [3] after relating to the inverse as-
pect ratio expansion parametee a/Ry <« 1, whereRy is

the characteristic scale length of the major radius.

We have derived reduced sets of two-fluid equations
for axisymmetric equilibria with flow in the orders of the
poloidal sound velocities [4]. The poloidal-sonic flow can
be described by the reduced model with the relafiene.

2 Basic equations

The equations for two-fluid equilibria with hot ions are

V- (nv) =0, (1)
VXE=0, 2
mnv-Vv =jxB-V(p+p)-4V-IIY, (3)
_ Mg
E+v><B_ne(J><B VPe)» 4)
uoj =V xB (5)
2
V- Vp; +7in'V+/li(g7’V'Qi):O’ (6)
(V—A1nj/ne - Vpe + ypeV - (V— Ayj/ne
2
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wherem is the ion massy is the densityy is the ion flow
velocity, E and B are the electric and magnetic fields,
is the current densityp; and pe are the ion and electron
pressures],‘[ig" is the ion gyroviscous tensay; andge are
the ion and electron heat fluxes respectively, and5/3.
The diagonal components of the pressure tensors are as-
sumed to be isotropic. The electron massis neglected
becausen. < m. The electron gyroviscosity is also ne-
glected sincepe < pi. We have introduced the artificial
indices 1j, 1 and Ay that label the two-fluid, non-ideal
terms: @, de, A4) = (0, 0, 0) for single-fluid (ideal) MHD,
(0,0,1) for two-fluid MHD with adiabatic electron pres-
sure but zero ion Larmor radius (Hall MHD) and (11)

This reduced set can describe the three models: single-fluid for two-fluids with finite ion Larmor radius. Here we shall

(ideal) MHD, Hall MHD, two-fluid model with ion FLR.
For the single fluid case, we can find analytical solutions
and study theféects of poloidal-sonic flow on the equilib-
rium profiles (Sec. 3). For the case of two-fluid model with
ion FLR, we have found numerically regular solutions that
depend on the sign of the x B flow compared to that of
the ion diamagnetic flow (Sec. 4).
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consider the corresponding toroidal axisymmetric equilib-
ria, where, in cylindrical coordinateR(p, Z), the mag-
netic fieldB can be written as

B=Vy(RZ)xVe+I(RZ)Ve (8)

The asymptotic expansion is defined in terms of the
inverse aspect ratie = a/Ry <« 1 wherea andR, are
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the characteristic scale length of the minor and major radii
respectively. The following higjs-tokamak orderings for
compressible reduced MHD are applied,

Bp~&Bo, P~ Pe~&(BY/mo), IVI~1/a

The variables are expanded fis= f; + fo + f3 +... We
assume slow dynamics ordering,

Vo~ OV, mnV ~ Y ~ 62pie,

G ~VPe ~ OVthi Pi.e-
The energy of flows in the order of the poloidal sound

speedv ~ Csp = (Bp/Bo)(yp/nm)¥/2 is the third order
of the magnetic energy,

mnv ~ &2p ~ &% (B3/uo)

The equation fog, is identical to the reduced GS equation
for single-fluid, static equilibria,

A _ R(% 2X 7 ’ IJZ. ’ 9

241 = —po % Py +9.|— > 9
whereA, = (0%/0R? + 6%/0Z?), p1 = pir + Per and

Pi2 + Pe2 + ib = 0. (¥1). (10)

HoRo

The following quantities are shown to be arbitrary func-
tions ofy,

pi1 = Pin(¥1),
I1 = l1(y1).

No = No(¥1),

Per = Per(t1), (11)

The dtects of flow, two-fluid and ion FLR appears in the
equation fory, [5, 4].
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Fig. 1 The Shafranov shift as a function of poloidal Mach num-
ber. The shaded region is beyond the equilibrium beta

Fig. 2 The magnetic surfaces foM2 = =

Apc
Mf\pc = 1.05ypy. (black).

0 (gray) and for

3 Single-fluid equilibria

Single-fluid MHD equilibria are given by setting
(Ai, 2es An) = (0,0,0). For linear profiles of the lowest-
order quantities, we have derived analytical equilibria of
high-beta tokamaks with poloidal-sonic flow and the ex-
pressions for the shift of the magnetic axis, the shift of the
pressure maximum and the equilibrium beta limit [6]. We
assume linear profiles for the following free functions,

p1= S(Bg/,uo) P1c (W1/¥c), (12)

0.+ 1 = 62(B3o) (%), 13)
2#ORS Ye

|\/l,’z-\p = SMipc (W1/e), (14)

Map (1) = — [tomino (1)]? Ro®) (¥1) /Bo  (15)

is the leading order of the poloidal AEn Mach number,
B1 = yp1/(B3/uo). The fixed boundary conditions for,
andy, are given by assuming circular cross section as

v1(a,0) = yo(a,6) = 0. (16)

We have also solved for the vacuum regiox ¥ assum-
ing thaty; andy, are smoothly connected at the plasma-
vacuum boundary = a. We then apply the following nor-
malization

r/ast,  Yi/Yc=y1,  Yalc = sy,

a/Ro=e,  Uo/BoRoa = €By,.

(For figures 1 - 8¢ = 0.1, gc = 4, pic = 3.2 andB, =
1.) The solution indicates the modification of the mag-

netic structure and the departure of the pressure surfaces
from the magnetic surfaces by sub- or super-poloidal-sonic
flows. We have shown that the shift of the magnetic axis

limit.
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from the geometric axis is enhanced by a slightly super-
poloidal-sonic flow and it produces a forbidden region of
equilibrium by the poloidal-sonic flow (Fig. 1). Figure 2
shows the magnetic structure Wﬁpc/yplc = 1.05, where
the equilibrium beta limit is violated since the separatrix
appears in the plasma region. The physical mechanism of
the shift of the pressure maximum from the magnetic axis
due to the poloidal-sonic flow can be explained in analogy
to those of the geodesic acoustic mode and the slow mag-

netosonic wave.
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Fig. 3 Isosurfaces af for Vgc = — v/ypic andVg. = —1.
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Fig. 4 Isosurfaces gb for Vg. = — v/yPrc andVye = —1.

4 Two-fluid equilibria with FLR

Two-fluid equilibria with FLR are obtained by setting
(Ai, de; A4) = (1, 1,1). From Faraday’s law (2), we obtain
E = —V®. The generalized Ohm’s law (4) is rewritten as

A
E+vxB= n—He(Vpi +mnv-Vv+/liV~H?").(17)

The ion flow velocityv is defined from Eq. (17) up to the
second order as

V = Vg + AV + Vi (B/B), (18)
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Fig. 5 Isosurfaces o for Vg = — /yprc andVy. = —1.
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The ion gyroviscous force is needed only in their leading
orders [5],

VE = Vgi = (19)

m
VI~ — 25 (RoVg x Vp) V-V (v + xaq) .(20)

Unlike for single-fluid equilibria, the profile afy must be
specified in order to give the profiles Bfx B and diamag-
netic flows for two-fluid equilibria. We assume the linear
profile of ng,

No = Ney. (21)
Then theE x B and the diamagnetic flows are given by

—1/2

Ve/Vap = VeVed): s (22)
—1/2
Viai/Vap = VeVacPiacls s (23)
Vde/VAp = - \/Evdcpelcall/z, (24)
where
Ro (B3 /1)
Vdc = — VeuoMiNge (25)

encBoyc

We solve the GS equation fgp by using the finite element
method with 4&40 grid points. Figures 3 - 5 show the iso-
surfaces ofy, p and the ion stream functio#i respectively
for Vgc = -1 andVy4. = —1. The single-fluid equilibria
with VZ, = ypy is singular because of the poloidal-sonic
singularity. The Hall-MHD equilibria also have singularity
att = 1 because the convective term in the equation/for

v_)

Vap

goes to infinity for the given profiles. Thus, this solution is
regular in the presence of both two-fluid and FLfReets.

Figures 3 - 5 also show that the isosurfaceg op and¥
do not coincide with each other due to the two-fluftket.
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Fig. 6 The profiles o# in the mid plane.
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Fig. 7 The profiles of in the midplane.

Figures 6 - 8 show the profiles ¢f p and the ion stream
function¥ respectively in the midplane fafg. = +1 and
V4c = —1. The solid lines are fovg. = Vg4 and the dashed
line are forVg. = —V4.. These results show that the equi-
librium solutions for two fluid equilibria with FLR depend
on the sign of thé x B flow.

5 Summary

We have solved a reduced set of equations for high-beta
tokamak equilibria with flow comparable to the poloidal
sound velocity analytically for the single-fluid MHD case
and numerically for the case of two-fluid model with ion
Finite Larmor radius (FLR). The analytical solution for
single-fluid MHD equilibria shows that the shift of the
magnetic axis from the geometric axis is enhanced by a
slightly super-poloidal-sonic flow and it produces a for-
bidden region of equilibrium by the poloidal-sonic flow.
Numerical analysis shows that there are regular solutions
for the two-fluid model with FLR that are singular for the
single-fluid and Hall MHD models, and that the solutions
depend on the sign of the x B flow compared to that of
the ion diamagnetic flow.
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Fig. 8 The profiles off in the midplane.
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