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High-beta toroidal equilibria with flow in reduced fluid models

Atsushi ITO and Noriyoshi NAKAJIMA
National Institute for Fusion Science,322-6 Oroshi-cho, Toki 509-5292, Japan

A reduced set of equations for high-beta tokamak equilibria with flow comparable to the poloidal sound
velocity are solved analytically for the single-fluid MHD case and numerically for the case of two-fluid model
with ion Finite Larmor radius (FLR). The analytical solution for single-fluid MHD equilibria shows that the shift
of the magnetic axis from the geometric axis is enhanced by a slightly super-poloidal-sonic flow and it produces
a forbidden region of equilibrium by the poloidal-sonic flow. Numerical analysis shows that there are regular
solutions for the two-fluid model with FLR that are singular for the single-fluid and Hall MHD models, and that
the solutions depend on the sign of theE × B flow compared to that of the ion diamagnetic flow.
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1 Introduction

In magnetically confined plasmas, equilibrium flows may
suppress instability and turbulent transport to give rise to
improved confinement modes where high-β is achieved. In
such equilibria, the scale lengths characteristic of micro-
scopic effects not included in single-fluid magnetohydro-
dynamics (MHD) cannot be neglected. Small scale effects
on flowing equilibria due to the Hall current have been
studied with two-fluid or Hall MHD models [1]. However,
these models are consistent with kinetic theory only for
cold ions. A consistent treatment of hot ions in a two-fluid
framework must include the ion gyroviscosity and other fi-
nite Larmor radius (FLR) effects. In the fluid formalism
of collisionless magnetized plasmas, these effects are in-
corporated by means of asymptotic expansions in terms of
the small parameterδ ∼ ρi/a, whereρi is the ion Larmor
radius anda is the macroscopic scale length. With a slow
dynamics ordering,v ∼ δvth wherev andvth are the flow
and thermal velocities respectively, the ion FLR terms [2]
are much simplified in the reduced models for large-aspect-
ratio, high-β tokamaks [3] after relatingδ to the inverse as-
pect ratio expansion parameterε ≡ a/R0 � 1, whereR0 is
the characteristic scale length of the major radius.

We have derived reduced sets of two-fluid equations
for axisymmetric equilibria with flow in the orders of the
poloidal sound velocities [4]. The poloidal-sonic flow can
be described by the reduced model with the relationδ ∼ ε.
This reduced set can describe the three models: single-fluid
(ideal) MHD, Hall MHD, two-fluid model with ion FLR.
For the single fluid case, we can find analytical solutions
and study the effects of poloidal-sonic flow on the equilib-
rium profiles (Sec. 3). For the case of two-fluid model with
ion FLR, we have found numerically regular solutions that
depend on the sign of theE × B flow compared to that of
the ion diamagnetic flow (Sec. 4).

2 Basic equations

The equations for two-fluid equilibria with hot ions are

∇ · (nv) = 0, (1)

∇ × E = 0, (2)

minv · ∇v = j × B − ∇ (pi + pe) − λi∇ · Πgv
i , (3)

E + v × B =
λH

ne
(j × B − ∇pe) , (4)

µ0j = ∇ × B (5)

v · ∇pi + γpi∇ · v + λi

(
2
5
γ∇ · qi

)
= 0, (6)

(v − λH j/ne) · ∇pe + γpe∇ · (v − λH j/ne)

+λe

(
2
5
γ∇ · qe

)
= 0, (7)

wheremi is the ion mass,n is the density,v is the ion flow
velocity, E and B are the electric and magnetic fields,j
is the current density,pi and pe are the ion and electron
pressures,Πgv

i is the ion gyroviscous tensor,qi andqe are
the ion and electron heat fluxes respectively, andγ = 5/3.
The diagonal components of the pressure tensors are as-
sumed to be isotropic. The electron massme is neglected
becauseme � mi . The electron gyroviscosity is also ne-
glected sinceρe � ρi . We have introduced the artificial
indicesλi , λe and λH that label the two-fluid, non-ideal
terms: (λi , λe, λH) = (0,0,0) for single-fluid (ideal) MHD,
(0,0,1) for two-fluid MHD with adiabatic electron pres-
sure but zero ion Larmor radius (Hall MHD) and (1,1,1)
for two-fluids with finite ion Larmor radius. Here we shall
consider the corresponding toroidal axisymmetric equilib-
ria, where, in cylindrical coordinates (R, ϕ,Z), the mag-
netic fieldB can be written as

B = ∇ψ(R,Z) × ∇ϕ + I (R,Z)∇ϕ (8)

The asymptotic expansion is defined in terms of the
inverse aspect ratioε ≡ a/R0 � 1 wherea and R0 are
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the characteristic scale length of the minor and major radii
respectively. The following high-β tokamak orderings for
compressible reduced MHD are applied,

Bp ∼ εB0, pi ∼ pe ∼ ε
(
B2

0/µ0

)
, |∇| ∼ 1/a.

The variables are expanded asf = f1 + f2 + f3 + . . . We
assume slow dynamics ordering,

v ∼ δvthi, minv2 ∼ ‖Πgv
i ‖ ∼ δ2pi,e,

qi ∼ vpi,e ∼ δvthi pi,e.

The energy of flows in the order of the poloidal sound
speedv ∼ Csp ≡ (Bp/B0)(γp/nmi)1/2 is the third order
of the magnetic energy,

minv2 ∼ ε2p ∼ ε3
(
B2

0/µ0

)
.

The equation forψ1 is identical to the reduced GS equation
for single-fluid, static equilibria,

∆2ψ1 = −µ0R2
0

[(
2x
R0

)
p′1 + g′∗

]
−


I2
1

2


′
, (9)

where∆2 ≡ (∂2/∂R2 + ∂2/∂Z2), p1 ≡ pi1 + pe1 and

pi2 + pe2 +
B0

µ0R0
I2 ≡ g∗ (ψ1) . (10)

The following quantities are shown to be arbitrary func-
tions ofψ1,

n0 = n0(ψ1), pi1 = pi1(ψ1),

pe1 = pe1(ψ1), I1 = I1(ψ1). (11)

The effects of flow, two-fluid and ion FLR appears in the
equation forψ2 [5, 4].
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Fig. 1 The Shafranov shift as a function of poloidal Mach num-
ber. The shaded region is beyond the equilibrium beta
limit.
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Fig. 2 The magnetic surfaces forM2
Apc = 0 (gray) and for

M2
Apc = 1.05γp1c (black).

3 Single-fluid equilibria

Single-fluid MHD equilibria are given by setting
(λi , λe, λH) = (0,0,0). For linear profiles of the lowest-
order quantities, we have derived analytical equilibria of
high-beta tokamaks with poloidal-sonic flow and the ex-
pressions for the shift of the magnetic axis, the shift of the
pressure maximum and the equilibrium beta limit [6]. We
assume linear profiles for the following free functions,

p1 = ε
(
B2

0/µ0

)
p1c (ψ1/ψc) , (12)

g∗ +
I2
1

2µ0R2
0

= ε2
(
B2

0/µ0

)
gc

(
ψ1

ψc

)
, (13)

M2
Ap = εM2

Apc(ψ1/ψc) , (14)

MAp (ψ1) ≡ − [
µ0min0 (ψ1)

]1/2 R0Φ′1 (ψ1) /B0 (15)

is the leading order of the poloidal Alfvén Mach number,
β1 ≡ γp1/(B2

0/µ0). The fixed boundary conditions forψ1

andψ2 are given by assuming circular cross section as

ψ1(a, θ) = ψ2(a, θ) = 0. (16)

We have also solved for the vacuum region 1≤ r assum-
ing thatψ1 andψ2 are smoothly connected at the plasma-
vacuum boundaryr = a. We then apply the following nor-
malization

r/a ≡ r , ψ1/ψc ≡ ψ1, ψ2/ψc ≡ εψ2,

a/R0 ≡ ε, ψc/B0R0a ≡ εBp.

(For figures 1 - 8,ε = 0.1, gc = 4, p1c = 3.2 andBp =

1.) The solution indicates the modification of the mag-
netic structure and the departure of the pressure surfaces
from the magnetic surfaces by sub- or super-poloidal-sonic
flows. We have shown that the shift of the magnetic axis
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from the geometric axis is enhanced by a slightly super-
poloidal-sonic flow and it produces a forbidden region of
equilibrium by the poloidal-sonic flow (Fig. 1). Figure 2
shows the magnetic structure forM2

Apc/γp1c = 1.05, where
the equilibrium beta limit is violated since the separatrix
appears in the plasma region. The physical mechanism of
the shift of the pressure maximum from the magnetic axis
due to the poloidal-sonic flow can be explained in analogy
to those of the geodesic acoustic mode and the slow mag-
netosonic wave.

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

x

Z

Fig. 3 Isosurfaces ofψ for VEc = −√γp1c andVdc = −1.
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Fig. 4 Isosurfaces ofp for VEc = −√γp1c andVdc = −1.

4 Two-fluid equilibria with FLR

Two-fluid equilibria with FLR are obtained by setting
(λi , λe, λH) = (1,1,1). From Faraday’s law (2), we obtain
E ≡ −∇Φ. The generalized Ohm’s law (4) is rewritten as

E + v × B =
λH

ne

(
∇pi + minv · ∇v + λi∇ · Πgv

i

)
.(17)

The ion flow velocityv is defined from Eq. (17) up to the
second order as

v ≡ vE + λHvdi + v‖(B/B), (18)
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Fig. 5 Isosurfaces ofΨ for VEc = −√γp1c andVdc = −1.

vE ≡ −∇Φ × B
B2

, vdi ≡ −∇pi × B
enB2

. (19)

The ion gyroviscous force is needed only in their leading
orders [5],

∇·Πgv
i ' −

mi

eB0
(R0∇ϕ × ∇pi1)·∇v−∇

(
χv + χq

)
,(20)

Unlike for single-fluid equilibria, the profile ofn0 must be
specified in order to give the profiles ofE× B and diamag-
netic flows for two-fluid equilibria. We assume the linear
profile ofn0,

n0 = ncψ1. (21)

Then theE × B and the diamagnetic flows are given by

VE/VAp =
√
εVEcψ

1/2
1 , (22)

Vdi/VAp =
√
εVdcpi1cψ

−1/2
1 , (23)

Vde/VAp = −√εVdcpe1cψ
−1/2
1 , (24)

where

Vdc ≡ −√εµ0min0c

R0

(
B2

0/µ0

)

en0cB0ψc
. (25)

We solve the GS equation forψ2 by using the finite element
method with 40×40 grid points. Figures 3 - 5 show the iso-
surfaces ofψ, p and the ion stream functionΨ respectively
for VEc = −1 andVdc = −1. The single-fluid equilibria
with V2

Ec = γp1c is singular because of the poloidal-sonic
singularity. The Hall-MHD equilibria also have singularity
at r = 1 because the convective term in the equation forψ2,

MAp

(
MAp − λi

Vdi

VAp

)

goes to infinity for the given profiles. Thus, this solution is
regular in the presence of both two-fluid and FLR effects.
Figures 3 - 5 also show that the isosurfaces ofψ, p andΨ

do not coincide with each other due to the two-fluid effect.
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Fig. 6 The profiles ofψ in the mid plane.
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Fig. 7 The profiles ofp in the midplane.

Figures 6 - 8 show the profiles ofψ, p and the ion stream
functionΨ respectively in the midplane forVEc = ±1 and
Vdc = −1. The solid lines are forVEc = Vdc and the dashed
line are forVEc = −Vdc. These results show that the equi-
librium solutions for two fluid equilibria with FLR depend
on the sign of theE × B flow.

5 Summary

We have solved a reduced set of equations for high-beta
tokamak equilibria with flow comparable to the poloidal
sound velocity analytically for the single-fluid MHD case
and numerically for the case of two-fluid model with ion
Finite Larmor radius (FLR). The analytical solution for
single-fluid MHD equilibria shows that the shift of the
magnetic axis from the geometric axis is enhanced by a
slightly super-poloidal-sonic flow and it produces a for-
bidden region of equilibrium by the poloidal-sonic flow.
Numerical analysis shows that there are regular solutions
for the two-fluid model with FLR that are singular for the
single-fluid and Hall MHD models, and that the solutions
depend on the sign of theE × B flow compared to that of
the ion diamagnetic flow.

[1] A. Ito, J. J. Ramos, and N. Nakajima, Phys. Plasmas14,
062501 (2007).

-9

-8

-7

-6

-5

-4

-3

-2

-1

 0

 1

-1 -0.5  0  0.5  1

x

Fig. 8 The profiles ofΨ in the midplane.
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