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  Effects of the perturbed magnetic field with low toroidal mode numbers (n) are considered. One cause of this 
type of perturbation, which has recently been studied in tokamaks, is MHD-activities. In helical/stellarator, this 
low-n perturbation is sometimes artificially added for island diverters. In viewpoint of the neoclassical viscosities, 
these perturbed magnetic fields affect on both of bounce center drifts of toroidally trapped and ripple-trapped 
particles. However, in usual neoclassical analyses in helical/stellarator devices assuming periodic magnetic field 
strength, these effects had not been studied. For future studies in helical/stellarator devices, a method to use 
bounce-averaged drift kinetic equation for the toroidally trapped particles is proposed. 

 
Keywords: neoclassical transport, neoclassical viscosity, drift kinetic equation, rotational stabilization of RWM, 

island diverter 
 

1. Inroduction 
  Neoclassical analyses in helical plasmas often assume 
the toroidally periodic magnetic field strength of 
B=ΣBmncos(mθ−nNζ) [θ, ζ : poloidal and toroidal angles, 
N: the toroidal period number] and thus effects of the 
low-n (n<N) error magnetic fields in a more general 
expression B=ΣBmncos(mθ−nζ) had not been investigated. 
However, in recent tokamak studies [1-3], this kind of 
low-n error magnetic field component induced by 
MHD-activities is considered to be important since it 
causes various additional neoclassical effects relating to 
the rotational stabilization of the resistive wall mode and 
island physics. The toroidal viscosity caused by 
additional bounce-averaged bounce center motions has 
been mainly investigated in these studies in tokamaks. 
When the low-n modes exist in helical and stellarator 
configurations, it affects not only on the toroidally 
trapped (berely trapped) particles but also on the 
ripple-trapped (deeply trapped) ones. It also should be 
noted that this type of low-n error fields is sometimes 
added artificially for island diverters. Although these 
effects for the viscosity are already covered by a recently 
proposed basic framework for the neoclassical transport 
in general non-symmetric toroidal plasmas [4], the “full 
torus” calculation including the low-n modes will be huge 
if we adopt the numerical procedures (such as variational 
methods and Monte Carlo methods) described in Ref.[4]. 
Practically usable methods to obtain the viscosity 
coefficients have still remained as future theme. Even in 
our previous study deriving and testing various 
analytically approximated formulas [5], the 
bounce-averaged effects due to the low-n modes are not 

included. Therefore we recently started to study an 
extension of the analytical approximation methods for the 
drift kinetic equation in helical and stellarator 
configurations to include these additional drift effects [6]. 
This understanding for the trapped particles’ dynamics 
will be useful not only for studies of mean flows [1-3] but 
also for studies investigating a relation of the neoclassical 
transport with the zonal flow [7-8]. 
  As an important implicit basis of the neoclassical 
transport analysis, we assume here existences of nested 
closed magnetic flux surfaces [4]. This assumption means 
that only resonant modes of m−nψ’/χ’=0 in the Fourier 
expansions of 1/B2 in the Boozer coordinates and of B2 in 
the Hamada coordinates are forbidden. Here, χ’ and ψ’ 
are radial derivatives (‘=d/ds with the arbitrary label of 
flux surfaces s) of the poloidal and toroidal magnetic 
fluxes, respectively, and (m,n) are the poloidal and 
toroidal Fourier modes in the expansions. We shall define 
the flux coordinates (s,θ,ζ) there to make the safety factor 
to be positive q !" ' /# ' > 0 . Non-resonant low-n modes 
of ⎪m−nq⎪≈1, and nearly resonant modes m−nq≈0 in 
other functions still can exist without breaking the flux 
surfaces. For the non-bounce-averaged guiding center 
drift effects such as the parallel viscosity force 
determining the parallel plasma flows, we already derived 
analytical formulas which is applicable to arbitrary 
Fourier spectra of the magnetic field including this type 
of low-n error fields. Therefore we shall focus on the 
bounce-averaged bounce-center drifts of the toroidally 
trapped and ripple-trapped particles in so-called 1/ν 
collisionality regime. In contrast to the non-averaged 
effects, in which all of Fourier coefficients Bmn are 
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required, the effective range of (m,n) is limited in 
calculation of the bounce-averaged effects. For e.g., 
contributions of extremely high frequency modulation 
along the B-field line with 

 
m ! nq ! Nq ! L  vanish in 

the bounce averaging and are not important for both of 
the ripple-trapped and toroidally trapped particles. Here 
(L.N) are the basic poloidal and toroidal modes of the 
helical modulation, which is used in a “conventional” 
model expression with the assumption of the toroidal 
periodicity [5,7,9,10,11,12] 

B/B00 = 1+ !T(") + !H(") cos L" # N$ + % ("){ }   (1) 

for the ripple-trapping effects. It should be noted here that 
the analytical bounce-averaging for the ripple-trapped 
particles [11,12] assumes that the phase term γ(θ) is a 
slowly varying small function. Furthermore, in the 
analytical bounce-averaging for the toroidally trapped 
particles, we shall treat this high frequency modulation 
(helical and bumpy ripples) !H(") cos L" # N$ + % ("){ }  
by a ripple-averaging. Also in this “ripple-averaging” of 
the toroidally trapped particles’ motion, this characteristic 
of γ(θ) is favorable. In existing helical/stellarator devices, 
this characteristic is not attained in the Hamada 
coordinates (s, θH, ζH), which are used in some theories 
for tokamaks [3,4]. The Boozer coordinates (s, θB, ζB) are 
better for analyses of helical/stellarator devices and thus 
we assume the use of the Boozer coordinates though we 
omit the subscript “B” indicating “Boozer”. Methods to 
include the low-n perturbed fields and to truncate 
nonessential B-field spectra in the bounce-averaged 
kinetic equation depend on the trapped orbit topologies 
and thus we consider them separately in the next section. 
It also is assumed in these discussions that Nq−L is 
positive and Nq−L  ! 1, which is satisfied in general 
helical/stellarator configurations. 
 
2. Expressions of the Magnetic Field Strength for 
the Bounce-averaged Motions 
  For a simplicity, we assume the stellarator symmetry of 
the B-field strength B(−θ,−ζ)=B(θ,ζ). In the 
bounce-averaged drift kinetic equations [3,11,12], 
parallel drift term [4] 

  
V! fa1 ! v!bi"(µ=const) fa1  vanishes 

as a result of the averaging 
  
dl /v!"! , and the substantially 

remaining guiding center drift is that due to 
  
!s " Bi!v!  

in the radial drift term [4] 
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However, B-field strength modulation along the field line 
 Bi!B  also is still implicitly included as the 

  
v!  

modulation and as a factor determining the positions of 
trapped particles’ reflection points. Procedures carrying 
out this averaging analytically depend on the trapped 
orbit topologies; the toroidally trapped orbits in the barely 
trapped pitch-angle range where 

  
v! " const  along the 

B-field line in a ripple period, and the ripple-trapped 
orbits in the deeply trapped range where 

  
v! ! const  in 

the period. This difference in a characteristic of the 
parallel drift velocity 

  
v!  results in different treatments 

of Bmn components around m~L, n~N. For the toroidally 
trapped particles with the long bounce period over larger 
poloidal angle ranges, the reflection points are almost 
determined only by the envelop function 
1+ !T(") + !H(")  in Eq.(1) and the bounce-averaging of 

  
!s " Bi!v!  can be carried out with an approximation of 

  
v! " const  in the ripple period. In this case, the parallel 
modulation  Bi!B  in 

  
!v!  due to non-axisymmetric 

(n≠0) Bmn modes is not essentially important, and the Bmn 
are separated into only two types; axisymmetric modes 
n=0 causing the trapping, and the non-axisymmetric 
modes as a cause of the bounce-averaged radial drifts. In 
the tokamak theory assuming !H(") # 0  [2,3], a 
following expression of B is used to calculate effects of 
m~nq non-axisymmetric modes on the toroidally trapped 
particles’ parallel velocity 

  
v! . 

B = Bm0
m

! cos(m")

      + cos(n#0 ) Bmn
m

! cos (m $ nq)"{ }
%

&
'

n(0

!

               $ sin(n#0 ) Bmn
m

! sin (m $ nq)"{ }
)

*
+

    (4) 

Here, !0 " q# $ !  is a label of the magnetic field lines. 
We shall use this method also for toroidally trapped 
particles in helical/stellarator devices. It should be noted 
that only non-axisymmetric modes of m ! nq < Nq ! L  
effectively remain in the field-line integral per the 
ripple-period in the case of 

  
v! " const , and this 

remaining poloidal mode (m) range becomes narrower in 
the integral for longer bounce periods. 
  On the other hand, we should take into account both of 
 !s " Bi!B  and  Bi!B  in 

  
!v!  for the ripple-trapped 
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particles with 
  
v! ! const  in the ripple-period. For this 

calculation, we consider a use of differential 
 
!s " Bi!Jr  

of the adiabatic invariant Jr [11,12], for which an 
analytically approximated expression for the model field 
in Eq.(1) is given by 

  

Jr ! v!dl"" =
16B# /B00

N $ L /q

% $ 2sin
$1&*

%
µB00'eff

ma

(

)*
+

,-

1/2

                  . E(/ ) $ (1$/ 2
)K(/ ){ }      (for / 2 < 1)
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Here, K(κ) and E(κ) are the complete elliptic integrals of 
the first and second kind, respectively, and the 
pitch-angle parameter κ 2 in them is defined by 
κ 2≡{w−µB00(1+εT−δeff)}/(2µB00δeff). Although detailed 
definitions of the effective ripple-well depth δeff and the 
length correction α* are shown in Ref.[9], 
approximations of δeff ≅ εH and α*≅0 can be used in 
many helical/stellarator devices as stated in Ref.[5]. In 
contrast to the toroidally trapped cases, the axisymmetric 
B-field modulation n=0 scarcely has the trapping effects 
( Bi!B ) and substantially has only radial drift effects 
( !s " Bi!B ) for the ripple-trapped particles. Although 
the non-axisymmetric modulations n≠0 cause both of 
them, there are two types of the n≠0 modes; high 
frequency modulation along the field line 
!H(") cos L" # N$ + % ("){ } , and the low frequency ones 

 
Bi!cos(m" # n$ ) % 0 . If the non-axisymmetric mode 
satisfies 

 
!s " Bi!cos(m# $ n% ) ! const  in a ripple 

period, it is appropriate to include it into !T(") , but this 
treatment neglects the 

  
v!  modulation due to this mode. 

In case of the ripple-trapping, we should avoid this 
neglect as long as contributions of the n≠0 modes keeps 
an important characteristic of !H(")  as a slowly varying 
function along the B-field line. For this calculation, we 
shall consider an expression of B 
B = Bm0

m
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Here, !0 " ! # $ /q  in the third term is another label of 
the magnetic field lines. In previous stellarator theories 
[5,7,9-12], the first and second terms are used as 
1+ !T(")  and !H(") cos L" # N$ + % ("){ }  in Eq.(1), 
respectively, and the third term is neglected there. Even 
though it is well-known that l≥2 in the second term is 

truncated in Ref.[11], these higher harmonics can be 
included in the analytically approximated calculation of Jr 
and 

 
!s " Bi!Jr  by some methods such as that in 

Ref.[12], and thus we retain here the l≥2 terms. Also in 
this Eq.(6), effective poloidal mode (m) range, which 
remains in the integral along the field line per 
ripple-period is limited. Similarly to Eq.(4), only a range 
of m/q ! n < N ! L /q  is important in the first and third 
terms, and the third term with this truncation has a role as 
the low frequency modulation along the field line 
analogous to 1+ !T(")  in Eqs.(1),(5). In the second term, 
as discussed in Ref.[9], only a range of m ! lL < Nq ! L  
should be included to keep !H(")  as a slowly varying 
function compared with cos L! " N# + $ (!){ } . Therefore, 
only for this limited (m,n) region, we can include both of 

 
Bi!cos(m" # n$ )  and 

 
!s " Bi!cos(m# $ n% )  in 

 
!s " Bi!Jr . The trapping effects due to 

 
Bi!cos(m" # n$ )  vanish on the line of m ≅ nq in the 
(m,n) space, and it is appropriate to be included in 
!H(") cos L" # N$ + % ("){ }  for the modes in 
m < Nq + (l !1)L  which do not include this line. The 
modes in m>Nq being high frequency contributions in 
!H(")  must be separated from this term and be treated in 
the third term in Eq.(6) to include only 

 
!s " Bi!cos(m# $ n% )  since 

 
Bi!cos(m" # n$ ) % 0  near 

this line m ≅ nq. Although contributions of 
 
m ~ L ! nq  

with n≠0, lN in the third term do not automatically vanish 
only by the bounce-averaging for the ripple-trapped orbits 
with 

  
v! ! const , they are substantially slight toroidal 

modulations of !H(")  and ! (") , and are not important 
in the final flux-surface-averaged results. Therefore only 

 
!s " Bi!cos(m# $ n% )  in the range of m ! nq < Nq ! L  
is retained in the third term. 
  The low frequency B-field strength modulation along 
the field line !T(")  in Eq.(1) is now extended to include 
non-axisymmetric component !T

(na)
(" ,# )  by 

B/B00 ! 1+ "T
(as)

(#) + "T
(na)
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            + "H(#) cos L# % N$ + & (#){ }
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and the axisymmetric component !T
(as)
(")  is defined by 

!T
(as)
(") #

1

B00
Bm0

m$nq <Nq$L

% cos(m")  . 

As mentioned in the introduction, practically interesting 
B-field perturbations are low-frequency modulation 
m ! nq " 1  with low toroidal modes of n !N in both of 

the MHD-activity induced and artificially added 
perturbations, and thus n≥N in !T

(na)
(" ,# )  is not actually 

important. By these considerations, however, we find that 
the definition of the “low frequency modulation along the 
B-field lines” differs depending on the pitch-angle (κ 2) 
range. The treatment of (n ! N )q + L < m < Nq + (l !1)L  
at n=lN differs in two ranges discontinuously; toroidally 
trapped particles in κ 2>1, and ripple-trapped particles in 
κ 2<1. This difference corresponds to that of bounce- (or 
ripple-) averaged 

  
!v!  effects in two pitch-angle ranges 

κ 2>1 and κ 2<1. In contrast to Eq.(5) for κ 2<1, the 
ripple-averaged parallel velocity for κ  2>1 is given by 
[12],  

  

Jt ! v!dlripple
period
"" =

16B# /B00

N $ L /q
µB00%eff
ma

&

'(
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*+

1/2

,E(1/, ) . (8) 

Although J in Eqs.(5),(8) and !1
+ , !

Xa
 in Eqs.(2),(3) 

are continuous at κ 2=1, !J  and the bounce average of 
!1
+ , !

Xa
 are discontinuously change at κ 2=1. An 

aforementioned approximation 
  
v! " const  in a ripple 

period at κ 2>1, in spite of a fact that 
  
v! ! const  at κ 2<1, 

is motivated by this discontinuous change. It may be 
thought that one problem in this definition of “low 
frequency” in the ripple-trapped pitch-angle range κ 2<1 
is a discontinuous change of our treatment at a boundary 
regime in the (m,n) space m≅Nq+(l−1)L. In the Fourier 
expansion of B on the magnetic flux surface coordinates 
(Boozer coordinates in many practical cases) making the 
phase function γ(θ) to be a slowly varying small function, 
however, Bmn in this region are small, and thus the 
discontinuous change is not a serious problem. In 
addition to it, since the poloidal mode (m) limiters of 
nq ! m < Nq ! L , m ! lL < Nq ! L , and so on in 

Eqs.(4),(7) are actually implemented by low-pass filters 
in !/!"  operation [9], the contributions of the modes do 
not change discontinuously. 
  A method to obtain approximated values of !H(")  for 
an approximation of 

1

B00

cos l(L! " N# ){ } Bm, lN
m"lL <Nq"L
$ cos (m " lL)!{ }

  " sin l(L! " N# ){ } Bm, lN
m"lL <Nq"L
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, -H(!) cos L! " N# + . (!){ }

, (9) 

which corresponds to retaining only first lowest mode 
term in the Todoroki’s “phase” Fourier series [12], is 
already described in Ref.[9] and will not be shown here. 
It only should be emphasized here on this high frequency 
modulation term !H(") cos L" # N$ + % ("){ }  that its 
amplitude !H(")  is more essential rather than the form 
of the modulation cos L! " N# + $ (!){ }  in calculating 
the bounce-averaged radial drifts. The higher harmonics 
of n=N with l=2,3,4,… can contribute to this amplitude 
!H(")  and are sometimes non-negligible [9]. The 1/ν 
component of the ripple-trapped particle distribution 
function can be obtained only by replacing !"T /!#  by 
! "T

(as)
(#) + "T

(na)
(#){ } /!#  in the previous ripple diffusion 

theories [11,12] and their applications [5,7,9,10]. In the 
next section, we describe only a method to obtain the 1/ν 
component in the toroidally trapped particle distribution. 
 
3. Bounce-averaged Solution for the Toroidally 
Trapped Particles 
  Another reason for aforementioned choice of the 
Boozer coordinates is a fact that we cannot fully include 
all of  !s " Bi!B ,  Bi!B  in 

  
!v!  and neglect some 

parts of  Bi!B  in the bounce-averaging as discussed in 
the previous section. Although the radial drift term !1

+  
given in the Boozer coordinates in a form of 

  
!s " Bi!(v! /B)  as shown in Eq.(2) is suitable this 
analytical approximation, use of !

Xa
 in Eq.(3) requires 

more exact calculation of 
  
Bi!v!  even in the bounce 

averaged equation. One more reason is that contributions 
of the boundary regime in the (m,n) space 

 
m ! lL ! Nq ! L  should be small in determining  the 

envelop function !H(")  in Eq.(9). Therefore, to derive 
the 1/ν diffusion coefficient, we execute a procedure in 
Ref.[3] in the Boozer coordinates, in which the Jacobian 
is given by gB = (V' /4!

2
) B

2
/B
2  [4], although this 

previous theory is originally written using the Hamada 
coordinates ( g

H
= V' /4!

2 ). In this derivation, we allow 
also existence of helical and bumpy ripple 
!H(") cos L" # N$ + % ("){ }  and therefore the 
ripple-averaged parallel velocity is given by Eq.(8), while 
the velocity in the axisymmetric limit is used in Ref.[3]. 
By rewriting Eq.(6) as  

B/B00 = 1+ !T
(as)

(")

            + An (") cos(n#0 ) + Bn (") sin(n#0 ){ }
n=1

$

%
,  (10) 

and with a boundary condition at 
  
v! = 0  making 

!GXa /!µ  to be finite, 
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is obtained. The integral period length for 
 
d!!"  is 

determined by the envelope function 1+ !T
(as)
(") + !H(") , 

and 
 
v
//0 , Baxsymmetric in this integral are defined by 
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ma
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Note that E(κ) in 0≤κ ≤1 is a monotonically decreasing 
function in a range of 1≤E(κ)≤π/2, and thus the 
ripple-averaged parallel velocity coincides with the 
axisymmetric value 

 
v//0 = v(1! µBaxisymmetric /w)

1/2  in 
the small ripple limit of δeff→0. Results shown in 
Refs.[2-3] are those for this δeff→0 limit with only one 
axisymmetric B-field modulation B10 (Bm0=0 for m≥2). As 
a result of 

  
v! " const  in a ripple period and resulting 

 

  

v!(!B/!"0 )dlripple
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+
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+
,
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, 

Eq.(11) has a identical form to the !"T /!#  term in the 
stellarator ripple diffusion theories [11-12]. If at least one 
of 

  
v!  and !B/!"0  is almost constant in the period, this 

result is obtained. This approximation cannot be used for 
the ripple-trapped particles, and therefore !Jr /!"  
including !"H /!#  is calculated by using Eq.(5) for the 
deeply trapped pitch-angle range of κ 2<1 [11-12]. The 
approximation of 

  
v! " const  for the barely trapped 

pitch-angle range µ~w/BM [BM: maximum value of B in 
the flux surface] is justified by a fact that the 1/ν 
diffusions without the low-n and nearly resonant B-field 
modes of n<N and m ! nq " 1  are almost determined 
only by those of ripple-trapped particles in various 
helical/stellarator configurations [4,5,9,10]. This fact 
means that the toroidally trapped particles do not have 
effective bounce-averaged radial drift in spite of the 
break of the axisymmetry due to the ripples, and only 
!B/!"0  due to additional perturbation fields with 
m ! nq " 1  can cause their bounce-averaged drift. In 

cases with the stellarator symmetry B(−θ,−ζ)=B(θ,ζ), the 
contribution of Bn (!) , which is an odd function of θ, 
vanish in Eq.(11), and thus !B/!"0  is given there by 
(1/B00 )!B/!"0 = # nAn ($) sin(n"0 )% . By further 
pitch-angle integral with the boundary condition GXa=0 at 
the circulating/trapped boundary µ=w/BM, the 1/ν 

diffusion coefficients (the diagonal mono-energetic 
viscosity coefficient L* defined in Ref.[4]) can be 
obtained in a form of 

  

L(MHD)
  * !

1

"D
a

dµ  

n
2 v//0

Baxisymmetric( )
2
An (#) d#!$

%

&
'

('
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'

+'

2

n=1

,

-

v//0

Baxisymmetric( )
2

d#!$
trapped$

. 
Though this integral can only be obtained numerically, 
this estimation is still easier than applications of existing 
numerical methods for helical/stellarator devices [4]. 
 
4. Conclusion 
  In this paper, we investigated effects of the nearly 
resonant magnetic field spectra on two types of trapped 
particles’ drifts (toroidally trapped and ripple trapped) by 
extending and combining the analytical methods for 
tokamak neoclassical viscosity [2-3] and the ripple 
diffusions in helical/stellarator devices [5-12]. The 
analytical bounce-averaging methods for these particles’ 
bounce-center drifts in the 1/ν collisionality regime are 
proposed. 
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