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Langevin Equation for Guiding Center Motion
and its Application to Neoclassical Transport Theory
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Neoclassical transport in toroidal plasmas is addressed by the Langevin equation. To ensure the diffusive
nature of a stochastic process, the dynamics of test particles is expressed in terms of the Langevin equation
with the assumption of sufficiently small radial orbit width. The transport coefficients are evaluated by the time
integration of auto- and cross-correlation functions for each pair of time-reversal expressions of microscopic
fluxes. As a test of this method, the neoclassical viscosity coefficients are calculated numerically and are shown
to agree with analytical formulas.
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1 Introduction

The Langevin equation[1] is used to describe the trans-
port processes in a system close to thermal equilibrium.
An advantage of the Langevin-type description is that it
can be easily simulated using a quasi-random number gen-
erator. The Monte Carlo methods have been extensively
used in the stellarator/heliotron research, in particular, to
estimate the 1/ν radial diffusion[2], which gives the irre-
ducible minimum of the transport level in a toroidal con-
figuration. The calculation of parallel transport such as
bootstrap currents is also important for predicting the non-
inductive currents which are observed in experiments.

Mathematically, the Langevin equation is an example
of stochastic differential equations(SDEs)[3]. When we
consider a stochastic variable X(t) in a Gaussian random
process with t, a time variable, the evolution of X(t) can be
written in terms of SDEs by

dX(t) = a(X; t) dt + b(X; t) dW(t), (1)

where a(X; t) is the deterministic part of test particle mo-
tion, while b(X; t) denotes the random acceleration with
the standard Wiener process W(t). In most cases, we need
not solve exact trajectories of test particles. Instead, the
Wiener increments dW(t) are approximated by relatively
simple random variables, such as the two-point or uniform
ones. The Monte Carlo collision operator introduced by
Boozer and Kuo-Petravic[2] is an example of using the
two-point random variables as an approximation of the
Wiener increments.

On the other hand, the transport theory in such a
stochastic system can be treated quantitatively by the
correlation-function method[4]. The transport coefficients
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are then calculated from the time-integration of correla-
tion function between microscopic fluxes carried by each
particle. This method is also known as the Green-Kubo
formula[5, 6]. In the linear response theory of stochas-
tic process[7], this approach is valid in a variety of trans-
port phenomena, provided that the evolution of a system is
dominated by Gaussian probability distributions.

In the present paper, we propose a method for comput-
ing neoclassical transport matrix using the Langevin equa-
tion and correlation function. Although it is not easy to
calculate the correlation function in general, the neoclas-
sical ordering[8] enables us to evaluate it as a function of
magnetic surface label. In Sec. 2, we derive the Langevin
equation for guiding center motion. Section 3 describes
the correlation-function method for neoclassical transport
theory, in which we calculate the neoclassical viscosity
coefficients[9] as a numerical test. In Sec.4, we summa-
rize the main finding of this work and comment on future
studies.

2 Langevin Equation

We now wish to derive the Langevin equation for
describing the neoclassical transport in toroidal plasmas.
Here, we note that the phase-space coordinates of guiding
center are regarded as stochastic variables. The test parti-
cle experiences the deterministic friction and random ac-
celeration together with the complex Hamiltonian motion,
which is formulated by the drift Hamiltonian theory[10].
If we denote the guiding center coordinate by zi (i =
1, . . . , 5), its Hamiltonian motion is expressed by the Pois-
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son bracket {•, •} or Poisson tensor ωi j ≡ { zi, z j } as

zi = { zi,H } = ωi j
∂H
∂z j

, (2)

where H is the drift Hamiltonian[10]. If we take into ac-
count the Coulomb collisions, equations of motion must be
written in terms of SDEs like Eq.(1). Therefore,

dzi(t) =
[

a(H)
i (t, z) + a(F)

i (t, z)
]

dt + bi j(t, z) dW j(t),

(3)

where we divided the deterministic part ai into the Hamil-
tonian a(H)

i = ωi j ∂H/∂z j and the friction part a(F)
i . We

note that Eq.(3) becomes non-Hamiltonian and stochastic
because of the friction force and random scattering.

In the present work, we retain only the pitch angle
scattering in the collision operator. We used the coordinate
system (s, θ, ζ, v, ξ), where s is the surface label, θ and ζ are
the poloidal and toroidal angles, respectively, v is particle
velocity, and ξ is the pitch variables. This choice is con-
venient because, in our case, the particle energy becomes
manifestly a constant of motion, and the non-Hamiltonian
terms are included only in ξ. We also note that the Boozer
coordinates[11] were used to describe the guiding center
position. From Eq.(3), we can write the stochastic motion
of guiding center by

ds = { s,H } dt,

dθ = { θ,H } dt,

dζ = { ζ,H } dt,

dv = 0,

dξ = { ξ,H } dt − νDξ dt +
√

(1 − ξ2)νd dWt, (4)

where νD is the deflection frequency. The Poisson brack-
ets appeared in Eqs.(4) represent the guiding center equa-
tions used in the orbit calculation. Equations (4) contain
the guiding center drifts up to the first order of dimension-
less parameter ε ≡ ρL/L, where ρL is the Larmor radius
and Lc is the characteristic scale length in the radial di-
rection. In the local and diffusive picture of neoclassical
transport[8], however, the effect of finite radial orbit width
is neglected so that the particle dynamics relevant to the
transport can be expressed only by the terms up to zeroth
order. Therefore, we approximate the Poisson brackets up

to the lowest order:

ds = 0,

dθ =
vξ
B

χ′
√

gB
dt,

dζ =
vξ
B

ψ′
√

gB
dt,

dξ = −v(1 − ξ2)
2B

[
χ′
√

gB

∂ ln B
∂θ
+

ψ′
√

gB

∂ ln B
∂ζ

]
dt,

−νDξ dt +
√

(1 − ξ2)νD dWt, (5)

where χ and ψ are the poloidal and toroidal flux func-
tion, respectively, the prime denotes the derivative with re-
spect to the surface label s, and the Jacobian

√
gB is of

Boozer coordinates. For simplicity, we did not consider
the poloidal and toroidal drifts induced by the radial elec-
tric field in Eqs.(5). As discussed in the next section, the
radial drift term {s,H} affects the transport only through
the linear response to the radial thermodynamic force. Ac-
cordingly, the dynamics of test particles involves only the
motion along magnetic field lines. In this approximation,
the treatment using the Poisson bracket guarantees conser-
vation of energy.

The numerical solution of Eqs.(5) gives the stochas-
tic motion of test particles. Those ensemble relax to the
stationary probability distribution, P0, within the statisti-
cal error due to the finite number of test particles. We use
P0 as the initial condition of test particle distribution when
we calculate the correlation function.

3 Correlation Function Method

In this section, we discuss the correlation-function
method for calculating the neoclassical transport matrix.
The transport matrix determines the phenomenological re-
lation between the macroscopic fluxes and thermodynamic
forces[12], and it can be evaluated through the auto- and
cross-correlations of the microscopic fluxes.

The correlation function of microscopic fluxes, σi(z)
and σ j(z), is given by

Ri j(t) =
∫

dz P0(z)σi(z(0))σ j(z(t)), (6)

where we assumed that σi(z) and σ j(z) have the time-
reversal symmetry (an even function of pitch variable) and
the test particles are distributed with P0 at t = 0. If the
thermodynamic force is switched on at t = 0, the first-
order flux such as radial drifts will be driven as a linear
response. The time-dependent transport coefficient, which
is called as the running transport coefficient[13], is evalu-
ated by

Di j(t) =
∫ t

0
dτRi j(τ). (7)
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Fig. 1 The correlation functions RUU , RXX and RXU numerically
calculated by Eq.(6). The collisionality is νD/v = 1 ×
10−3, the banana regime. The horizontal axis denotes the
time normalized by νD.

This quantity will converge to a finite value if the transport
process is characterized by diffusive nature[13].

In Eq.(6), we choose σi(z) and σ j(z) by[9]

σU ≡ −mv2 P2(ξ) B · ∇ ln B, (8)

σX ≡ −v2 P2(ξ)
B
Ω

(
Ũb +

∇s × b
B

)
· ∇ ln B, (9)

where m is the particle mass, P2(ξ) is the second order Leg-
endre polynomial and B is the magnetic field, B = |B|,
b = B/B, and Ω is the Larmor frequency. The quantity Ũ
is defined by the solution of

B · ∇(Ũ/B) = B × ∇s · ∇(1/B2), 〈BŨ〉 = 0. (10)

The bracket denotes the surface averaging operation. We
calculate the auto- and cross-correlation functions of σU

and σX as

RUU(t) =

∫
dθdζdξ P0 σU(t = 0)σU(t),

RXU(t) =

∫
dθdζdξ P0 σX(t = 0)σU(t),

RXX(t) =

∫
dθdζdξ P0 σX(t = 0)σX(t),

(11)

where the integrals are evaluated by the Monte Carlo meth-
ods. We note that the correlation functions parametrically
depend on the initial surface label and particle velocity be-
cause ds = 0 and dv = 0 in Eqs.(5).

The evolution of correlation functions for each pair of
fluxes are given in Figs. (1). The magnetic field model
used here is the same with that in Ref.[9]. For this case,
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Fig. 2 The running transport coefficients DUU , DXX , and DXU

calculated by the time integration in Eq.(7) for the cor-
relation functions in Fig.(1). The horizontal axis denotes
the time normalized by νD.

magnetic field strength is given by B = B0[1 − εt cos θ −
εh cos(lθ − mζ)] with εt = 0.1 and εh = 0.01, where l
and m are the poloidal and toroidal field periods, respec-
tively. The collisionality is set as νD/v = 1 × 10−3 (Ba-
nana regime). We observed that the correlation functions
decayed within the relaxation time. Figure (2) shows the
running transport coefficients, which are denoted by DUU ,
DXU , and DXX , respectively, were converged to the finite
values, asymptotically.

The choice of microscopic fluxes given in Eqs.(8)
and (9) is useful because the neoclassical viscosity
coefficients[9] can be evaluated by DUU , DXU , and DXX .
We calculate the neoclassical viscosity coefficients, L, M,
and N by

M =
1
T

DUU

[
1 − 3DUU

2mTνDK〈B2〉

]
, (12)

N =
1
T

DXU

[
1 − 3DUU

2mTνDK〈B2〉

]
, (13)

L =
1
T

DXX +
3D2

XU

2mT 2νDK〈B2〉

×
[
1 − 3DUU

2mTνDK〈B2〉

]
, (14)

where T is the temperature in energy units and K ≡
mv2/2T . Once we obtain the collisionality dependence of
L, M, and N (or the geometric factor instead of N, defined
by GBS = −e〈B2〉N/M), we can calculate the Onsager-
symmetric viscosity matrix using the energy integral[9].

Figures (3), (4) and (5) show the collisionality de-
pendence of normalized viscosity coefficients L∗, M∗, and
GBS for the same magnetic field strength with that used
in Fig.(1) and (2). The solid lines represent the analytical
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Fig. 3 The collisionality dependence of radial diffusion coef-
ficients L∗ ≡ L/[ 1

2 (vT /T )(BvT /Ω)2K3/2], where vT =√
2T/m is the thermal velocity.

Fig. 4 The collisionality dependence of Parallel viscosity coef-
ficients, M∗ ≡ M/(mvT K3/2), against parallel flows.

asymptotic expressions given in Ref.[9]. In these figures,
the numerical results obtained by the correlation-function
method show reasonable agreements with the analytical
values. Therefore, we have concluded that the correlation-
function method in Eq.(11) has been successfully veri-
fied through the calculation of neoclassical viscosity co-
efficients.

4 Conclusions

In the present work, we derived the Langevin equa-
tion of guiding center motion and developed the method
for computing neoclassical transport using the correlation-
function method. As noted in Sec.2 and 3, the neoclassical
ordering for the Langevin equation is important to ensure
the local and diffusive nature of neoclassical transport. We
should also mention that, owing to this assumption, the ex-
plicit calculation of correlation functions becomes possi-

Fig. 5 The collisionality dependence of geometric factor GBS.

ble.
As a specific example, we evaluated the neoclassi-

cal viscosity coefficients, L∗, M∗ and GBS, which are
used in the moment-equation method[9] for obtaining the
viscosity-flow relation. We showed that the viscosity coef-
ficients can also be calculated by the correlation-function
method, which is based not on the kinetic but on the
stochastic approach using the Langevin equation.

In future work, the effect of radial electric field should
be taken into account in Eqs.(5) and we will test the method
for realistic toroidal MHD equilibria.
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