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An algorithm has been developed and realized as a FORTRAN code to calculate the volume integral power of a 

magnetic confinement nuclear fusion reactor and the fusion rate function in a general case taking as input data the 

nuclei energy distributions, fusion cross-sections and the magnetic surface geometry. Two fast and simple analytic 

models of practical magnetic flux surface shapes have been introduced and the corresponding Jacobian 

determinants have been found. The developed method has been applied to obtain the radial profiles of the nuclear 

fusion reaction rate and the volume integral power for both Maxwellian and suprathermal D and T particle 

distributions. Gaussian kernel empirical probability density estimation has been proposed to reconstruct the ion 

energy probability density function from experimentally obtained random samples of escaping neutral atom energy. 

Neutral particle diagnostic database may serve as a basis for an experimentally confirmed calculation technique for 

reactor power and ignition criterion. 
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1. Introduction 

The power of a magnetic confinement fusion reactor 

P [W] and the fulfillment of the ignition criterion are 

quantitatively determined by the nuclear fusion reaction 

rate αβ�  [m
-3

s
-1

] integrated over the plasma volume using 

the known magnetic surface geometry: 

3( )P dαβ∝ =∫ r r�  

( , , ) ( , , )R J d d dαβ ρ ϑ ϕ ρ ϑ ϕ ρ ϑ ϕ∫� ,    (1) 

where 

0

0

0 0 1

R R

Z Z
J

ρ ϑ

ρ ϑ

∂ ∂

∂ ∂

∂ ∂
=

∂ ∂
              (2) 

is the Jacobian determinant for the transformation from 

cylindrical coordinates ( , , )R Z ϕ  to flux coordinates 

( , , )ρ ϑ ϕ  with ρ , ϑ  and ϕ  designating the 

magnetic surface label, the poloidal angle and the toroidal 

angle respectively. Azimuthally symmetric magnetic 

surfaces are assumed in (2). 

The rate of the nuclear fusion reaction between the 

species α and β, 

1

n nα β

αβ αβ

αβδ
=

+
�� � ,             (3) 

in turn, is proportional to the rate coefficient  

( )αβ σ=�� v v  averaged over the velocity distribution 

functions of the reacting species by integrating over the 

six-dimensional velocity space: 

3 3( ) ( ) ( )f f d dαβ α α β β α βσ= ∫ v v v v�� v v ,    (4) 

where α β= −v vv  is the relative velocity and αβδ  

is the Kronecker symbol reflecting the fact that when the 

reacting species are identical as in DD and TT reactions, 

and their density is n, the rate is proportional to 
2

2 1
( 1)

2 2
n

n
C n n= − ≈ .  

The FORTRAN code for nuclear fusion rate and 

power calculation is based on (1) - (4) and nuclear 

cross-section approximations from [1-3]. Particle density 

profiles and the magnetic surface geometry are used as 

input data. Either analytic ion distribution functions based 

on theoretical models, or experimentally obtained ion 

distributions may be used for the calculations. 

 

2. Analytic Models of Magnetic Surfaces 

A rigorous treatment requires that Grad-Shafranov 

equation solutions are used. In order to increase the 

computation speed and simplify the code, two analytic 

models of magnetic surfaces have been used in the form of 

nested shifted D-shaped curves and nested shifted ellipses 

in the poloidal cross-section. The D-shaped last closed flux 

surface (LCFS) equation in cylindrical coordinates is 
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            ( )1 2( )
LCFS

Z R Rκ κ± = ± +  

2

3 4 5 6 7
R R Rκ κ κ κ κ× + + + + ,      (5) 

where 
1 2

out
Rκ γ= , 

2 1 2κ γ= − , 
3 1 4κ γ= − , 

( )( )4 32 2 1outRκ κ δ γ= − + − , 
2

5 3
2

out
Rκ κ δ= +  

( )2 1 outRγ× − 2δ+ , 
6

1κ =  and 
7 out

Rκ δ= −  are 

determined by three input parameters: outer plasma 

radius 
out

R  [m], LCFS poloidal cross-section width δ  [m] 

and dimensionless γ  to control the LCFS poloidal 

cross-section width to height ratio. One more dimensional 

input parameter ∆  [m] is to simulate the Shafranov 

shift. The magnetic axis position is then 

0
2

in out
R R

R
+

= + ∆ ,            (6) 

where the inner plasma radius 
in

R  [m] is calculated 

from the LCFS equation (5). The poloidal angle 

[ )0,2ϑ π∈  is defined in the same way as the polar 

angle assuming 
0 , 0R R Z= =  to be the centre point 

and Z  to be the polar axis. 

As for the transformation between the cylindrical 

coordinates ( , , )R Z ϕ  and flux coordinates ( , , )ρ ϑ ϕ , 

the azimuthal (toroidal) angle [ )0,2ϕ π∈  preserves. 

For a given point ( , )ρ ϑ  in the poloidal plane the 

coordinate transformation to cylindrical ( , )R Z  is 

performed as follows. First, 

( ) ( )signϑ π π ϑ π ϑ= − − −�         (7) 

is calculated, where ( ) 1sign y = −  for 0y <  and 

( ) 1sign y =  f o r  0y ≥ .  I f  0ϑ =� ,  t h e n 

( )0 0
0;

out
Z R R R Rρ= = + − .  I f  ϑ π=� ,  t h e n 

( )0 0
0;

in
Z R R R Rρ= = + − .  I f  2ϑ π=� ,  t h e n 

( ) ( )0 0
;

LCFS
R R Z Z R signρ π ϑ+= = − .  Otherwise, 

the nonlinear equation 

( )

0

tan 0
LCFS LCFS

LCFS

Z R

R R
ϑ

+

− =
−

�          (8) 

is resolved numerically with respect to 
LCFS

R  sought 

within [ ],in outR R  . Then, 

             ( )0 0LCFSR R R Rρ= + − , 

( ) ( )LCFS LCFSZ Z R signρ π ϑ+= − .    (9) 

The ellipse-shaped LCFS equation in cylindrical 

coordinates is 

( ) 2

1 2 3LCFS
Z R R Rκ κ κ± = ± + + ,    (10) 

where 
2 2

1 b aκ = − , ( )2 2

2
2

out
b R a aκ = −  and 

( )
22 2 2

3 out
b b R a aκ = − −  are determined by three 

 

Fig. 1.  a) D-shaped and b) ellipse-shaped isolines 

     ρ = const for Rin = 1.5 m, Rout = 3 m, ∆ = 0.1 m. 

 

Fig. 2.  Jacobian determinant for a) D-shaped and 

b) ellipse-shaped magnetic surface models. 
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dimensional input parameters: outer plasma radius 
out

R  

[m], major and minor ellipse semiaxes a [m] and b [m]. 

Again, one more dimensional input parameter ∆  [m] 

is to simulate the Shafranov shift. The magnetic axis 

position is then 

0 out
R R a= − + ∆ .           (11) 

The coordinate transformation from ( , )ρ ϑ  to 

cylindrical ( , )R Z  is performed using formulas (8) and 

(9) analogously to the case of D-shaped curves 

substituting the proper function ( )LCFSZ R
+

 given by (10) 

instead of (5). 

Fig. 1 shows ρ = const isolines obtained by using the 

coordinate transformation procedures for the two model 

magnetic surface shapes. The parameters are δ = 1.5  m, 

γ  = 0.326426 for Fig. 1 a); a = 0.75 m, b = 1.5 m for 

Fig. 1 b), Rin = 1.5 m, Rout = 3 m, ∆ = 0.1 m for both. 

Since R  and Z  are implicit functions of ρ  and 

ϑ , central difference derivative formulas are used to 

calculate the elements of the Jacobian determinant (2). 

Left and right difference derivatives are used at the range 

[ ]0,1ρ ∈ , [ )0,2ϑ π∈  extremities. The resulting | |J  

shown in Fig. 2 enables one to calculate the volume 

integral (1) for either of the two magnetic surface types. 

These fast simple analytic models or their 

combination may be used as a satisfactory practical 

approximation of a tokamak magnetohydrodynamic 

equilibrium whenever chord or volume integration, or 

mapping of plasma parameters as functions of magnetic 

surfaces to real space coordinates is required in physical 

and engineering tasks. For stellarator configurations more 

complicated full 3D models are needed.  

 

3. Nuclear Fusion Rate Coefficients 

 

3.1. Monoenergetic beam and Maxwellian target 

 

For the monoenergetic and monodirectional 

distribution of species α interacting with a Maxwellian 

target β, 

( )

23/2

2

2
( ) , ( )

m v

T
m

T
f f e

β

β β

αα α β β
π

δ
−

−
 

= =  
 

v Vv v , (12) 

the rate coefficient (4) is reduced to 

     ( )
21/2

( ) 2
21

,

m V

BM T
m

V m T e
V T

β

β

αβ β
π

− 
=  

 

��  

2

2 2

0

( )sinh

m

T
m V

e d
T

β

βσ
+∞

− 
×  

 
∫

v

v

v v v .     (13) 

Denoting the atomic velocity unit as 
8

0 2.188 10 /cm s≈ ×v  and introducing a 

dimensionless variable 
2 2

0y =v v  and dimensionless 

constants 

2

0

2

m
A

T

β
=

v

 and 
0B V= v , consider a 

dimensionless function 

( )
2 2

2 2
( )

AB y Ay AB AB y Ay AB
y y e e

− − − − −= −� .  (14) 

Then,  

( )( ) 0

0

, ( ) ( )
2

BM A
V m T y y dy

B
αβ β σ

π

+∞

= ∫�� �
v

.  (15) 

To avoid arithmetic overflows, the constant 
2ABe−

 

should not be taken outside the integral. ( )y�  is a 

nonnegative, slightly asymmetrically bell-shaped 

exponentially decaying function as shown in Fig. 3. The 

maximum position depends on the parameters. 

Qualitatively, function ( )y�  can very roughly be 

thought of as a Gaussian curve corresponding to the 

Maxwellian distribution of target particles, shifted along 

the abscissa axis by a value corresponding to the beam 

particle velocity. The exact maximum condition is 

expressed by a nonlinear equation 

2

2 2

2
tanh

2

AB z
z

z AB
=

−
,           (16) 

where 2z AB y= . Equation (16) can be solved 

numerically, taking as an initial left-hand approximation 

to its root the positive root of the quadratic equation 

corresponding to the unit right hand side. 

Assuming the cross-section ( )yσ  to be a 

smoother function compared to ( )y� , the integral in 

0 2 4 6 8 10 12 14
0.0
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�
(y

)

y
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Fig. 3.  Function ( )y�  in the integrand in (15). 
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(15) can first be evaluated over a finite interval around 

the maximum of ( )y� . Then, at every subsequent step 

one should broaden the initially chosen arbitrary 

integration limits until the integral value becomes close 

enough to the one obtained at the previous step. Thus, the 

required relative precision may be achieved. 

 

3.2. Isotropically distributed projectiles and Maxwellian 

target. 

 

In the case when the velocity distribution of species α 

is expressed by an isotropic function ( )F vα  and the 

distribution of species β is Maxwellian as in (12), the rate 

coefficient is calculated as 

( )( ) 2 ( )

0

4 ( ) ,FM BM
v F v v m T dvαβ α α αβ α β απ

+∞

= ∫� �� � .  (17) 

The technique to compute ( )( ) ,BM v m Tαβ α β
��  is 

described above. The practical realization of formula (17) 

depends on the specific function ( )F vα . In particular, for 

suprathermal ion distributions occurring due to fast neutral 

beam injection heating the upper integration limit in 

practice appears to be finite. Another characteristic case of 

a bell-shaped exponentially decaying integrand implies that 

one should step-by-step broaden the integration range 

around the maximum position comparing the integral 

values until the required relative precision is achieved. 

 

3.3. Isothermal Maxwellian case. 

 

This is an important particular case of 3.2 above. For 

two Maxwellian species α and β at thermal equilibrium 

T T Tα β= =  the rate coefficient is 

( )( ) 3/2

0

0

2
( ) ( )MM

T y f y dyαβ αβµ γ σ
π

+∞

= ∫�� v ,  (18) 

where the dimensionless function ( )
y

f y ye
γ−= , the 

dimensionless variable 
2 2

0y =v v  and the 

dimensionless constant 

2

0

2T

αβµ
γ =

v

. The value 
0

v , as 

above, denotes the atomic velocity unit and 

( )m m m mαβ α β α βµ = +  is the reduced mass. The 

maximum of ( )f y  is attained at 1/y γ= . Assuming 

the cross-section ( )yσ  to be a smoother function 

compared to ( )f y , the integral in (18) can first be 

evaluated over a finite interval around the maximum of 

( )f y . Then, at every subsequent step one should 

broaden the initially chosen arbitrary integration limits 

until the integral value becomes close enough to the one 

obtained at the previous step. Thus, the required relative 

precision may be achieved.  

 

4. Fast Neutral Beam Injection-Induced 

Suprathermal Ion Distribution 

 

In order to describe the neutral beam injection 

heating-induced fast ion distribution, one can use the 

classical nonstationary slowing down distribution 

function for a delta-like fast ion source 

( )

( )
2

0

24

injv v

inj

S e
S v v

v

α

α

απ π

−
−

− =
2
e

e
         (19) 

( )
( )*

3 3

, inj

c

v v t v
F v erf

v v

α

α

α

  −Κ
=    +   e

 

inj
v v

erf
α −  

−  
 e

,              (20) 

where Κ  is a normalization constant, the slowing down 

time 

3 2

2 4 1 2

3

4 2

e
s

e e

m T

n Z e m

α

α

τ
π

=
Λ

,           (21) 

cube of the critical velocity 

3 2
3

1 2

3 2

2

e
c

e

T
v

m mα

π
= ,               (22) 

Λ is the Coulomb logarithm, and, as shown in [4], 

( ) ( )( )
1/3

3 /* 3 3 3, s

c c

t
v v t v v e vα α

τ= + − .    (23) 

The normalization constant Κ  is determined by 

numerical integration. The ion velocity 2 /v E mα α= , 

vinj is the injection velocity corresponding to the injection 

energy Einj, the values S0 and e  in (19) determine the 

source rate and peak width, respectively, and t is the time 

since the commencement of the fast particle source 

action. 

 

5. Experimentally Obtained Suprathermal Ion 

Distributions 
 

Radial and angle dependence of the ion distribution 

function is studied experimentally by means of passive 

line-integral and also active localized charge exchange 

P1-44

Proceedings of ITC18, 2008

292



 

 

neutral particle diagnostics [5, 6]. An extensive diagnostic 

database of this kind should enable one to predict the local 

ion distribution function evolution for a given plasma 

discharge regime in a certain device, for a specific heating 

method and time diagram. 

Using the diagnostic data in the form of an array of 

energies (E1, …, EN) of escaped neutral particles measured 

along a certain observation direction, where N is the total 

number of particles collected during a certain time interval, 

one can construct an empirical probability density function 

( )( )

1

1
, 0

N
jK

j

E E
f E K h

Nh h=

− 
= > 

 
∑    (24) 

with Gaussian kernel function 
2

2( ) 2zK z e π−= . The 

optimal kernel bandwidth h selection algorithm and the ion 

distribution function reconstruction are discussed in [7].  

Thus, a possibility exists to perform a correct 

experimentally confirmed calculation of the time evolution 

of the local fusion rate coefficient (4) and the fusion reactor 

power (1). Particular MHD equilibrium data can then be 

used rather than analytic approximations. 

 

6. Calculation Examples 

 

Assuming the radial density profiles to be 

( )( ), , , , , , , ,( ) (0) (1) (1)1
b

a

e D T e D T e D T e D Tn n n nρ ρ− − +=  (25) 

and radial temperature profiles 

( )( ), , , , , , , ,
( ) (0) (1) (1)1

r
q

e D T e D T e D T e D T
T T T Tρ ρ= − − + ,  (26) 

let us introduce an additive non-Maxwellian distortion of 

the form (20) to the deuterium distribution so that  

23/2

2

2
( ) (1 ) ( )D

D Dm

T
D D D

m

T
f A e A F

π

− 
= + − 

 
v

v

v ,  (27) 

where 1A ≤ . 1A =  corresponds to the pure undistorted 

Maxwellian case. The rate coefficient for the interaction of 

deuterium particles distributed according to (27) 

( )2 ( ) ( )2 (1 )MM FM

DD DD DD DDA T A Aµ= + −� � �� � �  

2 ( )(1 ) FF

DD
A+ − ��             (28) 

is then calculated using (17) and (18). The last term in (28) 

accounts for the “tail-tail” particle interaction rate. It is 

considered negligible because the non-Maxwellian 

distortion is assumed to be small, i.e. 
2(1 ) 1A− � . 

In the case when deuterium component distributed 

according to (27) interacts with Maxwellian tritons 

23/2

2

2
( ) T

T Tm v

T
T T

m

T
f e

π

− 
=  
 

v ,         (29) 

the rate coefficient is 

( )( ) ( )(1 )MM FM

DT DT DT DTA T Aµ= + −� � �� � � .  (30) 

The fusion rate radial profile and integral power 

calculation given below is for T(D,n)He
4
 reaction. Fig. 4 a) 

shows the electron density profile with a = 4, b = 2, 
14

(0) 1.0 10en = ×  cm
-3

, 
14

(1) 0.7 10en = ×  cm
-3

. The 

nuclei densities are / 2D T en n n= = . Fig. 4 b) shows the 

electron and ion temperature profile e D T
T T T= =  with 

q = 1.5, r = 2, 
3

, , (0) 5.0 10e D TT = ×  eV, 

, , (1) 50
e D T

T =  eV. 

Calculations have been performed for three variants 

of  the deuteron velocity distribution function shown in 

Fig. 5, namely, for undistorted Maxwellian distribution and 

for the cases when there exists 2.5% or 5% population of 

suprathermal particles described by the classical slowing 

down model of beam particles with the injection energy 

Einj = 150 keV. The non-locality, i.e., the radial dependence 

0.0 0.2 0.4 0.6 0.8 1.0

7x10
13

8x10
13

9x10
13

1x10
14
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 c
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ρ

 

Fig. 4.  a). Radial profile of deuterium and tritium 

density; b). Radial profile of deuterium and 

tritium temperature. 

a) 

b) 
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of the ion distribution function in this model is due to the 

radial profiles of ne and Te, determining the slowing down 

time and the critical velocity values. 

For each of the three variants of the distribution the 

radial profile of T(D,n)He
4
 reaction rate has been 

calculated as well as the plasma volume integral power for 

two types of magnetic surfaces with D-shaped and 

elliptical poloidal cross-sections as shown in Fig. 1. Slight 

differences in the magnetic surface shape, as expected, 

have no significant direct “geometrical” influence on the 

power. Calculation results are shown in Fig. 6. In this 

example the presence of 5% suprathermal deuteron 

population leads to approximately 25 time increase in the 

fusion power compared to the pure Maxwellian case. 

 

7. Summary 

 

A general practical algorithm has been realized to 

calculate the nuclear fusion rate and power in a toroidal 

magnetic plasma confinement device. Volume integration 

is performed using analytical approximations of magnetic 

surfaces. A detailed description of velocity space 

integration technique for beam-Maxwellian, 

bi-Maxwellian and “isotropic function - Maxwellian” 

cases has been given. Fusion rate and power calculations 

can be done using either theoretical or experimentally 

obtained nuclei energy distribution functions. 

A significant contribution to the nuclear fusion 

reaction rates comes from suprathermal ions from 

high-energy distribution tails. Therefore, the production 

and good confinement of fast ions play the essential role. 

Reliable experimental data and theoretical understanding 

of the formation of fast ion distribution tails are required. 

The ion distribution function reflects the kinetic 

effects, the single particle confinement properties 

depending on the particular magnetic configuration, the 

finite β effects such as MHD induced fast ion losses, 

radial electric field effects, etc. As a method to investigate 

the ion component distribution function and its evolution 

due to the application of heating, measurements of kinetic 

energy distributions of neutral atoms escaping from the 

plasma may be used, which are often referred to as 

neutral particle analysis (NPA) diagnostics. 

Multidirectional passive measurements provide 
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Fig. 6.  Radial profiles of T(D,n)He
4
 reaction rate 

for thermal tritons and three variants of deuteron 

energy distribution and the corresponding plasma 

volume integral power values for two types of 

magnetic surface geometry. 
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Fig. 5.  Deuteron energy distribution function a) in 

the undistorted Maxwellian case for A = 1 

and in the presence of suprathermal “tail” 

with b) A= 0.975 and c) A = 0.950. 

a) 

b) 

c) 
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information on the angular anisotropy, fast ion 

confinement, and distribution tail shapes. Line-integral 

energy-resolved neutral fluxes are obtained at different 

observation angles. Special mathematical techniques are 

required for the correct data analysis [5]. Another 

approach is to create a localized dense target for 

charge-exchange in the plasma. A diagnostic pellet 

ablation cloud can be used for this purpose (pellet charge 

exchange, or PCX method). Time-resolved measurements 

of the neutral flux from the cloud as it moves across the 

plasma column result in radially-resolved information on 

the fast particle energy distribution [6]. 

Smooth normalized probability density functions for 

the nuclei energies can then be calculated from NPA data 

using the method given in [7]. Thus, experimentally 

confirmed calculations of nuclear fusion rate and power are 

possible on the basis of diagnostic data. 
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