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A Global Simulation Study of ICRF Heating by TASK/WM and
GNET in Helical Plasmas
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A global simulation code is developed to study the ICRF heating in helical plasmas combining two global
simulation codes: a full wave field solver, TASK/WM, and a drift kinetic equation solver, GNET. The both codes
can treat a 3-D magnetic configuration based on the MHD equilibrium by VMEC code. The developed code is
applied to the ICRF minority heating in Large Helical Device (LHD). The ICRF wave propagation is solved by
TASK/WM and the obtained RF electric field is used to solve the drift kinetic equation by GNET.
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1 Introduction

The ion cyclotron range of frequencies (ICRF) heating has
long been considered a primary plasma heating method.
The physics basis and the efficiency of ICRF heating have
been confirmed by experimental, theoretical and simula-
tion studies. However, there still remains several impor-
tant issues in ICRF heating, e.g. finite orbit effect of ener-
getic ions, current drive, toroidal flow generation, etc. In
order to clarify these problems, a global simulation study
which takes into account the wave-plasma interaction self-
consistently is necessary.

In this paper, we study the ICRF heating in helical
plasmas combining two global simulation codes: a full
wave field solver TASK/WM [1] and a drift kinetic equa-
tion solver GNET [2], as a first step to develop a self-
consistent simulation. The developed code is applied to the
ICRF minority heating in the Large Helical Device (LHD).
The realistic ICRF wave profile obtained by TASK/WM is
used to solve a drift kinetic equation by GNET. The both
codes can treat a 3-D magnetic configuration based on the
MHD equilibrium by VMEC code.

In Sec. 2 the simulation models and codes are de-
scribed and, then, simulation results are presented in
Sec. 3. Finally, the obtained results are summarized in
Sec. 4.

2 Simulation model

In this study we combine two simulation code to study
the ICRF heating. The simulation model is illustrated in
Fig. 1. First, Maxwell’s equation for RF wave is solved by
TASK/WM code, then the obtained RF wave electric field
profile is used to solve a drift kinetic equation by GNET
code. Finally, the steady state velocity distribution func-
tion of plasma is obtained.

TASK/WM code solves Maxwell’s equation for RF
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Fig. 1 The schematic diagram of simulation model

wave electric field, E, with complex frequency, ω,

∇ × ∇ × E =
ω2

c2

↔
ε · E + iωµ0 jext, (1)

where the external current density, jext denotes the antenna
current in ICRF heating, as a boundary value problem
in the 3-D magnetic configuration. In the present analy-
sis, a simple collisional cold plasma model is applied [3].
Maxwell’s equation Eq. (1) is formulated by expansion to
Fourier mode in poloidal and toroidal direction and finite
different method in radial direction. Then the electric field
is formulated as

E(ψl, θ, ϕ) =
∑
mn

Emn(ψl)ei(mθ+nϕ), (2)

where l,m, n are the radial grid number, poloidal and
toroidal mode numbers, respectively.

GNET code solves a linearized drift kinetic equa-
tion for energetic ions including complicated behavior of
trapped particles in 5-D phase space as

∂ f
∂t
+

(
u‖ + uD

) · ∇ f + a · ∇u f

−C( f ) − QICRF( f ) − L = S , (3)

where C( f ) and QICRF are the linear Coulomb collision op-
erator and the ICRF heating term, respectively. S and L
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are the particle source term by ionization of neutral par-
ticles and sink (loss) term including orbit loss and charge
exchange, respectively.

In order to solve the linearized drift kinetic equation
(3) by Monte Carlo method, the Green function, G, is in-
troduced as

∂G
∂t
+

(
u‖ + uD

) · ∇G + a · ∇uG

−C(G) − QICRF(G) − L = 0 (4)

with the initial condition G(x, u, t = 0|x′, u′) = δ(x −
x′)δ(u − u′). The G is evaluated by solving the equation
of motion for guiding center of test particles expressed by
the Hamiltonian of charged particle

H =
1
2

mv2
‖ + µB(ψ, θ, ϕ) + qΦ(ψ) (5)

in Boozer coordinate. In order to solve the equation of mo-
tion, 6th-order Runge-Kutta method is applied. The colli-
sional effects are taken into account using the linear Monte
Carlo collision operator [4].

The ICRF heating term is modelled by changing the
perpendicular velocity of the test particle passing through
the resonance layer, ω − k‖v‖ = nΩ, by

∆v⊥ ≈
[(
v⊥0 +

q
2m

I|E+|Jn−1(k⊥ρL) cos φr

)2

+
q2

4m2 {I|E+|Jn−1(k⊥ρL)}2 sin2 φr

]− 1
2

− v⊥0

≈ q
2m

I|E+|Jn−1(k⊥ρL) cos φr

+
q2

8m2v⊥0
{I|E+|Jn−1(k⊥ρL)}2 sin2 φr,

(6)

where E+ and φr are the left-circularly polarized com-
ponent of RF wave electric field and random phase, re-
spectively. Also, q, m, ρL, Jn are the charge, mass,
the Larmor radius of the particle and nth Bessel func-
tion, respectively. The time duration passing through the
resonance layer, I, is given by the minimum value as,
I = min(

√
2π/nΩ̇, 2π(nΩ̈)−1/3Ai(0)), which corresponds

to two cases; the simple passing of the resonance layer and
the passing near the turning point of a trapped motion (ba-
nana tip).

In the simulation |E+| evaluated by TASK/WM is
used in Eq. (6). We consider only fundamental ion cy-
clotron resonance. The finite larmor radius (FLR) effect,
Jn−1(k⊥ρL) term in Eq. (6), is considered by evaluating the
wave length, λ, from the electric field wave form directly
as Fig. 2 and calculating the perpendicular wave vector,
k⊥ = 2π/λ⊥.

Assuming Bϕ � Bθ for simplicity, k‖ is evaluated as

k‖ ≈
n
R
, (7)

λ/2

Electric field wave

Fig. 2 Evaluation of wave length, λ, from electric field wave

where n is the toroidal mode number in Eq. (2) and R is the
major radius.

Finally the velocity distribution function is calculated
by integrating the particle in the phase space over initial
position (x′, u′) and initial time t′ as

f (x, u, t) =
∫ t

0
dt′

∫
dx′

∫
du′S G(x, u, t − t′|x′, u′).

(8)

3 Simulation results

We study the ICRF minority heating using the developed
code in the helical plasma (LHD). The poloidal cross sec-
tions of the MHD equilibrium by VMEC code are shown
in Fig. 3. The assumed plasma parameters are listed in
Table 1. We assume deuterium (D) as a majority ion and
hydrogen (H) as a minority ion.
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Fig. 3 Equilibrium data by VMEC and NEWBOZ, Contour
plots of magnetic flux ψ (left) and absolute value of mag-
netic field (right) on a poloidal cross section
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Table 1 Parameters of helical plasma (LHD)
Plasma major radius R0 3.6 m
Plasma minor radius a 0.58 m
Magnetic field at magnetic axis B0 2.75 T
Temperature at magnetic axis T0 3.0 keV
Temperature on plasma boundary Ts 0.3 keV
Density at magnetic axis n0 0.7 × 1020/m3

Density on plasma boundary ns 0.07 × 1020/m3

Antenna current density jext 1.0 A/m
Wave frequency fRF 38.5, 40.0 MHz
Minority ion ratio H/D+H 5 %
Collisionality νs 0.003

We first analyze the ICRF wave propagation and ab-
sorption in the plasma by TASK/WM. Fig. 4 shows contour
plots of the real part of left circularly polarized component
of the RF electric field, Re E+ (left) and the power absorp-
tion (right) on the poloidal cross section in the case of the
ICRF wave frequency fRF = 40.0 MHz (on axis heating).
Fig. 5 are the same manner in the case of fRF = 38.5 MHz
(off axis heating). The ICRF waves are exited in the plasma
from the antenna set on the outer side of the torus (right
side). In the both cases, the Re E+ component of the
wave is absorbed by the plasma and the wave amplitude
is damped near the minority ion cyclotron resonance layer
(the minority ion cyclotron resonance layers are drawn as
green lines in the left figure of Fig. 4 and 5). Then the am-
plitude is damped further near the two-ion-hybrid cutoff
and resonance layers.

Re E+ Pabs

Fig. 4 Contour plots of Re E+ (left) and Pabs (right) on the
poloidal cross section in the case of fRF = 40.0 MHz.

Re E+ Pabs

Fig. 5 Contour plots of Re E+ (left) and Pabs (right) on the
poloidal cross section in the case of fRF = 38.5 MHz

Next, we analyze the evolution of velocity distribu-
tion function of minority ions and the plasma heating effi-
ciency by GNET. The RF electric field profile obtained by
TASK/WM is used to accelerate the minority ions follow-
ing Eq. (6). The k⊥ is directly calculated from electric field
waves by the method illustrated in Fig. 2. The k⊥ and the
|E+| are shown in Fig. 6. The same plasma parameters are

Fig. 6 k⊥ (left) and |E+| (right) in the case of fRF = 40.0 MHz

assumed as in the TASK/WM calculation. The test particle
orbits are followed for about 0.6 s to obtain the steady state
of the distribution function.

The velocity distribution functions of minority ions
are shown in Fig. 7 ( fRF = 40.0 MHz) and 8 ( fRF =

38.5 MHz). Fig. 7 are contour plots of the velocity distribu-
tion averaged on the flux surface between ρ (=

√
ψ/ψa) =

0.0 and 0.10 (left upper), ρ = 0.31 and 0.41 (right upper),
and ρ = 0.45 and 0.55 (left lower), ρ = 0.66 and 0.76
(right lower) with fRF = 40.0 MHz. Fig. 8 shows in the
same manner of Fig. 7 in the case of fRF = 38.5 MHz.

Figure 9 shows the radial profile of the ICRF wave

Fig. 7 Velocity distribution averaged in each radial ρ interval
( fRF = 40.0 MHz)

power absorbed by minority ions in the case of fRF =

40.0 MHz (red line) and fRF = 38.5 MHz (green line).
We can see that the radial profile of the absorbed ICRF
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Fig. 8 Velocity distribution averaged in each radial ρ interval
( fRF = 38.5 MHz)

wave power depends on fRF and peaks at a specific ra-
dial position. The ICRF wave power absorbed by minor-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

P
ab

s 
(H

) 
[M

W
/m

3 ]

ρ

fRF=40.0
fRF=38.5

Fig. 9 Power profile absorbed by minority ions (H) in the case
of fRF = 40.0 MHz (red line) and fRF = 38.5 MHz (green
line)

ity ions is transferred to the background ions and electrons
through particle collisions. The heating power profiles
of background ions, Pdep (D), and electrons, Pdep (e), are
shown in Fig. 10. Although the both Pdep (D) and Pdep (e)
slightly peak at the same radial point, the profile of them
are broader compared to that of Pabs (H). The heating effi-
ciencies (Total heating power/Total power absorption) are
0.697 ( fRF = 40.0 MHz) and 0.396 ( fRF = 38.5 MHz), re-
spectively.

4 Conclusion

We have carried out a global simulation of ICRF heating
in the helical plasma (LHD) combining the full wave field
solver (TASK/WM) and the drift kinetic equation solver
(GNET). The realistic ICRF wave profile have been ob-
tained by TASK/WM and been used to solve a drift kinetic
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Fig. 10 Heating power profile of background ion (left) and elec-
tron (right) in the case of fRF = 40.0 MHz (red line) and
fRF = 38.5 MHz (green line)

equation in the GNET. The wave number k⊥ profile has
been directly evaluated from the wave form.

The characteristics of the ICRF minority heating in the
LHD have been shown.
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