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The most efficient fueling scheme so far is said to be a frozen deuterium pellet injection, even though it is 
still very difficult to accomplish central fuelling (to inject fuel into the burning plasma core) into nuclear fusion 
reactors. On the other hand, this scheme forms very cold (~101eV)and very dense (~10 23) plasma along the 
magnetic field line on the rational surface in the time scale of about 100ms. This is called LCDC (Local Cold 
Dense Compress). The detailed experimental observation has not been reported so far because of the difficulty 
stated below. This paper deals with the experimental proposal in this direction. The fundamental diagnostic scheme 
is 3D image reconstruction technique developed in our laboratory. This is originally developed in nuclear fusion research as a 
Soft X-ray Tomography. This technique is going to be used in many fields: CXT (Constrained X-ray Tomography)in medical 
field, CEBT (Constrained Electron Beam Tomography) in biological field and quantum entanglement detection for quantum 
computer research.  
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Inroduction 
The injected pellet goes under intense heat up and is ablated by bulk plasma and evaporated. The neutral 

hydrogen vapour-clusters go under free diffusion until they are ionized. These clusters  form  dense  plasmoid, 
 

 
Fig.1. LCDC on the rational surfaces. 

The plasma diffusion allows the LCDC density decay about 
100 times faster on q=1.01 than on q=1.1 magnetic surface. 
1st raw q=1.0,  2nd raw q=1.01  3rd  raw  q=1.1 

 
 

which is partially ionized plasma above the order of 
1025/m3. Because of the high collisionality, this 
plasmoid shields the solid pellet core from the main 
plasma and it travels almost the same speed as the 
injection speed crossing many rational surfaces. In 
their simulation, Nakamura and Wakatani estimated 
the plasmoid parameters as below in 1986 and well 
within the experimentally obtained parameters. 
 
Pellet core : ~101K , 1030/m3  
Plasmoid:  1024/m３ , 100 eV   
Bulk Plasma: 1020/m３ , 104 eV  
 
This plasmoid in this phase contains neutral hydrogen 
and radiates strong spectral emission. Because of this 
nature the  plasmoid has been studied both 
intensively and extensively.  
In due course, after about duration of 10-4 sec, the 
plasmoid develops to be nearly fully ionised and the 
radiation changes into continuum. Because of the fast 
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Fig.4. The three dimensional plot of the radiation intensity (left), 

the best fit surface of this image profile based on the 
equation (2) (right) and the difference between the two 
surfaces profiles (middle). The agreement is within 0.5% in 
this case. 

 
This image and the classical diffusion model agrees 
very well as shown above. The three dimensional 
plot of the intensity (left), the best fit surfaces of 
these image profiles based on the equation (2) (right) 
and the difference between the two profiles (middle) 
is shown in Fig.4. This simple model with only two 
adjustment parameters describes the basic feature of 
the radiation profiles well within our requirement. 
The mean discrepancy is less than 0.5% in this case. 
In this model we can trace around where and around 
when the LCDC are most probable to exist.  
  
Three dimensional reconstruction detection 

 
The next problem is how to distinguish the LCDC 
radiation out of the strong background radiation from 
the edge plasma. Let us see the example. In fug.5 the 
picture of ELM filament in MAST Spherical 
Tokamak is presented taken from Dudson et al3. The 
image is in focus a little behind the center colum so 
the front ELM filament is strongly blurred and the 
rear ELM filament is less blurred. If the physical If 
the physical system is optically thin and the  
Dynamic range of the image sensor is broad enough, 
we should be able to obtain the three dimensional 
information by using focusing technique based on the 
geometrical optics.In other word, we should be able 
to identify the position of the  radiation  source as 
shown in Fig.6. The plane at P1  receives the 
converging ray from the source. The plane P2 the ray 
is just in focus and The plane at P3 receives the 
diverging ray from the source. In P2 plane clear two 

dimensional image is recorded but on the other plane 
the image is blurred and the spatial correlation factor 
is larger than the focusing plane.     
  

 
 

Fig.5. The sample of off-focus image taken from 
The ELM filament in MAST L-Mode plasma 

B. Dudson et al. p.92, Programme 35th EPS Conf. Plasma Phys. 
2008. 

 
The two dimensional image taken on the camera 
sensor plate is understood as the convolution of all 
the ray passing through the lens. 
 

 
 
  Source              P1  P2    P3   

 
Fig.6. Out of focus blurred image in geometrical optics / ray 

tracing model. The plane at P1 receives the converging ray 
from the source. The plane P2 the ray is just in focus and 
The plane at P3 receives the diverging ray from the source. 

 
The simplest imaging method to meet this 
requirement is attained by tandem camera system 
shown in Fig.7 , which is in principle modified 
version of the conventional 3-CCD camera for RGB 
separation in instrumental engineering sense. Here 
spatial resolution is determined by the lens aperture 
and the camera position. The detailed description 
shall be published elsewhere. 
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Fig.7. Tandem camera configuration to obtain 3-dimensional 

spatial resolution.  
 
 
For LCDC measurement, strong background 
radiation is originated from the plasma boundary and 
LCDC is within the main plasma region. The image 
distance should be clearly distinguished even with 
conventional camera lens aparture and modidied 
version of the conventional 3-CCD camera system 
similar to Fig.7. At the same time on the wave optical 
assumption, we can expect the image co-relation in 
the off-focus plane.  
 
Low intensity detection 

 
Even though the emission intensity of LCDC 

itself is expected to be few orders of magnitude 
higher than the main plasma, this localized nature 
means total volume observed by the camera is again 
few orders of magnitude samaller than the peripheral  

 

 
 

Fig.8 Schematic example of low intensity photon imaging 
（Electron Beam version of Young’s Double Slit ) 

Taken from   
Build-up of an electron interference pattern. 

Numbers of electrons are 
 10 (a), 200 (b), 6,000 (c), 40,000 (d), and 140,000 (e). 

Tonomura A,, Proc. Natl. Acad. Sci. USA 102 No. 42 (2005): 
14952. 

 
 
plasma. In this sense it is difficult to detect unless the 
initial estimation of the position is vague or the 
plasma perturbation is not small to shift the rational 

surface. In these occasion the photon correlation 
type detection is necessary. This sort of problems is 
solved in the developing stage of Thomsom 
Scattering Experiment neary half a century ago. 
 

In Fig.8, we show the similar classical example. 
This is the Young’s double slit experiment by 
Tonomura.This nature is also seen in the quantum 
entanglement experiment aiming for the quantum 
computer.  

 
   

Conclusion 
 
We have discussed the fundamental diagnostic plans 
for  
 
LCDC (THE LOCAL COLD AND DENSE 
COMPRESS) 
 
narrow filamentary plasma channel which is 
supposed to lie on the rational surface. Even though 
this zone occupies only local zone but it shows very 
interesting diagnostic information. The detailed 
assumptions identifies the rough estimation of their 
nature. 
The starting point should be identified from the time 
history started from initial plasmoid phase from 
Balmer Radiation. The radial density profile is well 
assumed to be in Gaussian Profile and it lies on the 
Magnetic field line. 
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