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Algebraic analysis approach for multibody problems II:
Variance of velocity changes.
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The algebraic model (ALG) proposed by the authors has sufficiently high accuracy in calculating the motion
of a test particle with all the field particles at rest. When all the field particles are moving, hoewver, the ALG has
poor prediction ability on the motion of the test particle initially at rest. None the less, the ALG approximation
gives a good results for the statistical quantities, such as variance of velocity changes or the scattering cross
section, for a sufficiently large number of Monte Carlo trials.
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1 Introduction

Since it is difficult to rigorously deal with multibody
Coulomb and gravitational collisions, the current classical
theory considers them as a series of temporally-isolated bi-
nary Coulomb collisions within the Debye sphere. The ef-
ficient and fast algorithms to calculate inter-particle forces
include the tree method [2, 3], the fast multipole expan-
sion method (FMM) and the particle-mesh Ewalt (PPPM)
method [4]. Efforts have been made to use parallel comput-
ers, and/or to develop special purpose hardware to calcu-
late interparticle forces, e.g. the GRAPE (GRAvity PipE)
project [1].

Some of the authors have developed an algebraic
model for multibody problems, and have shown that the
momentum transfer cross-section with our model is in
good agreement with the exact one [1]. As shown in Fig. 1
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Fig. 1 Unperturbed relative trajectory r = r (θ) in an orbital
plane. The scattering center is at the origin. An impact
parameter is b = b0 tan θ0. Interaction region is inside the
circle with a radius r� = Δ�/2.
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its scattering angle, χ ≡ π − 2θ0, is given by b = b0 tan θ0,
where b is the impact parameter, b0 ≡ e2/4πε0μg

2
0 corre-

sponds to χ = π/2 scattering, and g0 the initial relative
speed at r = ∞ and θ = −θ0.

The angular component of the equation motion gives
the well-known invariant of

r2 dθ
dt
= const = bg0, (1)

and the radial component is given by

dgr

dt
=
g2

0b0

r2

(
1 +

b0

r
tan2 θ0

)
, (2)

where gr ≡ ṙ denotes the radial velocity. The first term in
the parentheses on the right hand side of Eq. (2) stands for
the Coulomb force Fc ∝ r−2. This force is much smaller
for small angle scatterings, i.e. χ � 1, than the second
term Fa which scales as ∝ r−3 and results from the conser-
vation of angular momentum Eq.(1), since, at the closest
point rmin = r (θ = 0) shown in Fig. 1, we have

b0 tan2 θ0

rmin
� 2
χ
� 1. (3)

Thus the main force on the particle is not the Coulomb
force Fc, but Fa due to the conservation of angular mo-
mentum.

2 Algebraic Approximation for Multi-
body Interaction

Since the r-dependence on Fa ∝ r−3 is steeper than that
on Fc ∝ r−2, the momentum change in μg is almost due
solely to Fa near r = rmin. As a consequence, the exact
hyperbolic trajectory for the particle can be approximated
as a broken line with an impulse force of

μΔg = 2μg0 cos θ0ex (4)

near the closest point as shown in Fig. 2.
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Fig. 2 Algebraic trajectory (broken line) and exact trajectory
(curved line) which is a part of a hyperbola. A field par-
ticle (black circle) is on the left.

With this in mind, we have approximated a multibody
problem to a series of binary deflections near their closest
point as shown in Fig. 2, in which a test particle starts at
the lower-right point, and its final point is at the upper-right
point due to the interaction with a field particle at rest.

2.1 Coordinate transformation

In order to apply the above binary interaction approxima-
tion (ALG) shown in Fig. 2 to multibody cases, first we
seek for a field particle that gives the test particle an im-
pulse force at the earliest time. For this purpose, it is con-
venient to transform the coordinate system from (x, y) to
(ξ, η), in such a way that the initial position of the test par-
ticle is at the origin (ξ, η) = (0, 0) and the relative velocity
g ≡ vi − v j is (gξ, gη) = (0, g). Then the relative position
ri j has an η-coordinate of

ηi j =
(
ri − r j

)
· g/g. (5)

The particle moves along the η-axis with a constant
velocity of g, and is to interact at

(
0, ηi j

)
with this field

particle in a time interval of Δti j ≡ ηi j/g sec. Accordingly,
the field particle that the test particle is given an impulse
force at the earliest time has the smallest positive ηi j, i.e.

ηmin ≡ min
(
max

(
0, ηi j

))
, for 1 ≤ i, j ≤ N, (6)

We have ignored the effect of field particles with ηi j < 0,
since the interaction is completed at η = 0 in our approx-
imation. In other words, such field particles have already
interacted with the test particle in the past.

When the test particle moves to the position of
(0, ηmin), it changes the relative velocity by Δgi j as

Δgi j = −2g sin
χi j

2
eξ, (7)

χi j � 2 arctan
b0

ξi j
, (8)

where the pair i and j satisfies Eq. (6), and we have ap-
proximated that the impact parameter is given by b = ξi j

in Eq. (4) as shown in Fig. 3. Thus, in the (ξ, η) coordinate

η

χ

ξ

( )min,ηξ

′
η

χ

ξ

( )min,ηξ

′

Fig. 3 Coordinate transform from the (x, y) to (ξ, η). In this co-
ordinate system, the scattering angle χ, i.e. the impact
parameter b and the time of the interaction Δt are approx-
imately given by ξ and η, respectively.

system, the field particle position ξi j and ηi j correspond
to the velocity change Δgi j and the time of the interaction
Δti j, respectively. This procedure will be repeated until the
test particle leaves the prescribed interaction region, i.e.
r < Δ�/2 as depicted in Fig. 1.

3 Calculation
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Fig. 4 Typical initial particle positions. The almost-uniformly-
distributed black circles are field particles. For Case 1, a
gray circle (or red in color) is the test particle at r with
an impact parameter b. Initial conditions for Case 2 is
that all the field particles are moving, and the test particle
locates at the orign at rest.

The numerical results with using the direct integration
method, DIM, hereafter refers to that obtained by solving
the following equation of motion a particle-i with a charge
qi, a mass mi, and velocity vi at a position ri

mi
dvi

dt
= qi

N∑
j�i

q j

4πε0

ri − r j∣∣∣ri − r j

∣∣∣3 , (9)
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where r j are the field particles’ positions. As the DIM
in this study, we will use the 6-stage 5-th order Runge-
Kutta-Fehlberg method known as the RKF65 [7, 8] with
the absolute numerical error tolerance of 10−16.

In the following, we will assume that, except a test
particle, the field particles on the average are randomly dis-
tributed in the phase space (r,v). In configuration space,
field particles are distributed with the average interparticle
separation, Δ�. We will consider two cases: all the field
particles are fixed at their initial positions, the Case 1, and
moving field particles, Case-2. The typical initial condi-
tion for Case 1 are depicted in Fig. (4)

3.1 Case 1: All the field particles at rest [5]

In Case 1, all the field particles are at rest, and one of them
locates at the origin. The test particle starts from the posi-
tion of (b,−Δ�/2) with a velocity of (0, v0). Thus b is the
impact parameter against the field particle initially at the
origin.
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Fig. 5 Comparison of algebraic trajectory (denoted by ALG)
and the exact trajectory (denoted by DIM, direc inegra-
tion method) in the case of 442-body Coulomb collisions
with an impact parameter b = 0.3Δ�. Coordinates (x, y)
are normalized by Δ�. The circles in the figures for the
algebraic trajectories stand for the positions at which the
test partcile is given the impulse force by one of 441 field
particles. See Ref. [5] for more detail.

Figure 5 is an example out of 105 Monte Carlo calcu-
lations for an impact parameter b = 0.3Δ�, and compares
the algebraic (ALG) trajectory and the exact (DIM) tra-
jectory normalized by the interparticle separation Δ�. Note
that the DIM results are accurate up to of the order of 10−16

which is the absolute error tolerance adopted. The circles
in the figure indicate the positions at which the test partcile
is given the impulse force by one of 441 field particles. The
algebraic (ALG) approximation agrees well with the direct
integration method, DIM, in most cases as shown in Fig. 5.
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Fig. 6 Accumulated Coulomb scattering cross section
σacc (b) /Δ�2 vs normalized impact parameter b̄ = b/Δ�
in the case of N = 442-boby.

Depicted in Fig. 6 is the accumulated scattering cross
section σacc (b) as a function of the impact parameter b de-
fined by

σacc (b) =
∫ b

0

(
Δg

g

)2

πbdb. (10)

The agreement with the exact one is also excellent. It
should, however, be noted that all the field particles are
at rest throughout the calculation in this case [5]. The CPU
time required for the algebraic approximation is only about
20 min using a personal computer, whereas the exact anal-
ysis requires 15 hours to integrate the entire set of multi-
body equations of motion.

3.2 Case 2: Moving field particles.

In Case 2, we will loosen the above restriction on the field
particle motion, and have applied the algebraic model to
the 10-body problem, in which there are 9 moving field
particles and a test particle initially at rest. The change in
position Δr (results not shown) of the field particles are in
good agreement with the exact one, since they are moving
so that Δri ∼ vi (0)Δt to a good approximation. Although,
the absolute value of the change in velocity |Δv| of each
particle by the ALG are of the same order as the exact one,
the orientation of Δv are not correct as shown in Fig. 7, in
which The test particle is given impluse forces as marked
with circles. Also depicted in Fig. 7 is the final point at
t = Δt by using the BIA, the binary ineraction approxima-
tion, proposed by some of the authors [6]. Note that the
BIA accurately predicts the final point of the DIM with the
absolute error tolerance of 10−16.

In spite of poor accuracy in the individual particle mo-
tion, the ALG approximation gives a good results for the
statistical quantities, such as variance of velocity changes
for a sufficiently large number of Monte Carlo trials. Fig-
ure 8 shows the variance of changes in velocity,

〈
(Δg)2

〉
, of
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Fig. 7 Case 2: Trajectory of the test particle initially at rest, in
the velocity space (U,V) normalized by a thermal speed.
There are 9 moving field particles.

the test particle initially at rest, in the case of N = 10-boby.
For small numbers of trials NMC, such as NMC ∼ 2 × 104

in Fig. 8, the ALG differes significantly from the DIM.
Several jumps seen in the figure are due to the close en-
counters, i.e. the large angle scatterings. The ALG some-
times results in the false close encounters, especially at
NMC ∼ 2 × 104, which have led to numerical errors. Such
errors in variance by the ALG becomes smaller for larger
NMC ∼ 106, since the large angle scattering seldom occurs
in plasmas. The variance calculated by using the BIA, per-
fectly agrees with the DIM as was shown in Fig. 8.
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Fig. 8 Variance of the change in velocity of the test particle ini-
tially at rest,

〈
(Δg)2

〉
, in the case of N = 10-boby. The

DIA stands for the direct integration method, ALG the
algebraic approximation, and BIA the binary ineraction
approximation [6].

4 Conclusion

The algebraic model (ALG) proposed by the authors has
sufficiently high accuracy in calculating the motion of a
test particle with all the field particles at rest. When all the
field particles are moving, hoewver, the ALG has poor pre-
diction ability on the motion of the test particle initially at
rest. None the less, the ALG approximation gives a good
results for the statistical quantities, such as variance of ve-
locity changes or the scattering cross section, for a suffi-
ciently large number of Monte Carlo trials.
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