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Preliminary Study on Uncertainty-Driven Plasma Diffusion
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Quantum mechanical plasma diffusion is studied using a semi-classical model with two different charac-
teristic lengths; one is the average interparticle separation, and the other is the magnetic length. The diffusion
coefficientsD by the model give similar dependence to experiments on many parameters, such as the temperature
T, the massm, the densityn, and the magnetic fieldB. The numerical values ofD is larger than that of the
neo-classical diffusion.
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1 Introduction

A classical particle obeys the deterministic equation of mo-
tion which gives the particle trajectory in the phase space
(r,v) at a timet. The actualtrajectory of a particle with
a massm, however, is stochastic in the phase space with
uncertainties in position∆r, in velocity∆v, and in energy
∆E in a time interval∆t because of the uncertainty relation:

∆r∆v >
~

m
, ∆E >

~

∆t
, (1)

where~ = 1.05457× 10−34 Joule·sec stands for Planck
constant. Equation (1) tells us that (i) lighter particle has
larger uncertainty in phase space, and (ii) the uncertainty
in energy∆E is larger for shorter time intervals.

Since, for a given time interval∆t, there are three un-
knowns∆r, ∆v, and∆E in Eq. (1), we need to find/impose
another relation among these uncertainties. For this pur-
pose, letL be a length that the particle travels during some
characteristic time interval, i.e.L ≡ v0∆t, wherev0 is the
initial particle speed.

In the presence of a uniform magnetic fieldB, the
classical particle’s energyE = mv2/2 is a constant of the
motion:

∆E = m∆v ·
(
v0 +

∆v

2

)
= 0. (2)

In the case of a quantum mechanical particle,∆E is not
necessarily zero, as

∆E ∼ mv0 · ∆v >
~

∆t
. (3)

Comparing the above with the uncertainty relation in
Eq. (1), we have

∆r < L, ∆v >
~

mL
. (4)

Thus, the square of the uncertainty in the cyclotron
centerrG = r + v × ω/ω2 is given by

(∆rG)2 = (∆r)2 +

(
m∆v

qB

)2

∼ L2 +

(
~

qBL

)2

. (5)
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2 Semi-Classical Model for Motion

Let us assume that a charged particle with a positive charge
q > 0 is moving in the presence of a uniform magnetic
field B = (0,0, B) in the z-direction. First, we integrate
the equation of motion for the classical particle for the time
interval of∆t to get the classical position in the phase space
(r (∆t) ,v (∆t)).

r (∆t) = r (0) +

∫ ∆t

0
v (t) dt, (6)

v (∆t) = v (0) +

∫ ∆t

0
v (t) × ω dt, (7)

whereω = qB/m is the cyclotron frequency vector.
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Fig. 1 Semi classical model for quantum motion. The particle
initially at r (0) classicallymoves tor (∆t) with a veloc-
ity v (∆t) at t = ∆t − 0. At this time, it suffers the quan-
tum mechanical deviations in position,∆r, and in veloc-
ity ∆v. The particle is atr′ (∆t) with a velocityv′ (∆t) at
the timet = ∆t + 0.

As shown in Fig. 1, next we add the randomly-
oriented uncertainties∆r, and∆v to r (∆t), andv (∆t), the
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magnitude of which is given by Eq. (4), as

r′ (∆t) = r (∆t) + ∆r, (8)

r′ (∆t) = v (∆t) + ∆v (9)

This procedure is repeated until the timet reachesτc ≡
2π/ω, i.e. the cyclotron period.

Fig. 2 Deviation of cyclotron motion,δr ≡ r (τc) − r (0), due
to uncertainty in one gyration for a given characteristic
lengthL = v0∆t. Lengths are normalized by the cyclotron
radiusρ = mv0/qB.

Figure 2 shows the particle trajectory during one cy-
clotron period, in which a deviationδr ≡ r (τc)−r (0) from
the classical motion is seen.

In the following subsections we will choose the aver-
age interparticle separation,∆` ≡ n−1/3, and the magnetic
length [1],`B ≡

√
~/qB, as the characteristic lengthL.
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Fig. 3 Histgram forδr = (δx, δy) for NMC = 5 × 107 Monte
Carlo trials.

It should be noted that the magnetic length`B =√
~/qB is the spatial size of wave packet in the plane per-

pendicular to the magnetic field [1], i.e.

|ψ (r⊥, t) |2 =
1

π`2
B

exp

− (r⊥ − 〈r⊥ (t)〉)2

`2
B

 , (10)

whereψ (r⊥, t) stands for the wavefunction,〈r⊥ (t)〉 the
classical position of the particle in the plane perpendicu-
lar toB.

From many Monte Carlo calculations (tyipically
NMC ∼ 104 turns out to be enough in this study for con-
vergence) of such the diffusion coefficient

D ∼
〈
(δr)2

〉

τc
(11)

will be obtained for a particular choice of the characteristic
lengthL, where〈·〉 stands for the ensemble average. Fig-
ure 3 shows the histgram ofδr for NMC = 5× 107 Monte
Carlo trials, which resembles the probability density func-
tion of a wavefunction in quantum mechanics.

2.1 CASE-A:L = interparticle separation,∆`
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Fig. 4 CASE-A: TemperatureT and densityn dependence of
diffusion coefficient D [m2/s] in the case ofL = ∆`, the
interparticle separation.

If we choose the characteristic lengthL ≡ ∆`, where
∆` ≡ n−1/3 stands for the average interparticle separation,
then the uncertainty in energy is given as∆E ∼ mv0∆v.
Thus, from Eq. (4), we have

∆r ∼ ∆`, and∆v ∼ ~

m∆`
. (12)

The particle is assumed to be in typical fusion plasmas
of T = 1−100 keV, andn = 1019−1021 m−3, andB = 1−10
Tesla. The initial particle speedv0 is selected as the thermal
speedvth =

√
2T/m. The above calculation for a fixedT,

n, andB is repeatedNMC = 104 times.
Figure 4 shows the temperature and density depen-

dence of the diffusion coefficientD = D (T,n), which leads
to the scaling of

DCASE−A ∼ 0.094

√
TkeV

A

(
1020

n

) 1
3

∝
√

T
m

n−1/3, (13)
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whereA = m/mp is the mass number withmp being pro-
ton mass. It is interesting to note that the diffusion coef-
ficient D does not depend on the magnetic fieldB, but on
the particle massm−1/2. The latter is known as the isotope
effect [3,4] .

2.2 CASE-B:L = magnetic length,̀B.
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Fig. 5 CASE-B: TemperatureT and the magnetic fieldB de-
pendence of diffusion coefficient D [m2/s]in the case of
L = `B, the magnetic length.

The uncertainties forL = `B, say the CASE-B, are

∆r ∼ `B, and∆v ∼ ~

m`B
. (14)

The particle is assumed to be in typical fusion plasmas of
T = 1 − 100 keV, andB = 1 − 10 Tesla. Note that the
densityn does not enter into this case. Monte Carlo calcu-
lations similar to the CASE-A are made. Figure 5 shows
the temperatureT and the magnetic fieldB dependencies
of the diffusion coefficientD, which leads to the scaling of

DCASE−B ∼ 0.033

√
TkeV

AB
∝

√
T

mB
, (15)

in which
√

T/m scaling is the same as Eq. (13) for the
CASE-A.

3 Discussion

Table 1 summarizes the dependence ofD on plasma pa-
rameters, such asT, n andB. The parameters’ ranges are
1 ≤ T ≤ 100 keV, 1≤ B ≤ 10 Tesla, and if applicable
1019 ≤ n ≤ 1021 m−3. The ITER-89 dependence ofD in
the table assumesD ∝ ρ2/τE, whereτE is the energy con-
finement time in the ITER-89 scaling law. The diffusion
coefficientsD by these models give similar dependence to
experiments on many parameters, such as the temperature
T, the massm, the densityn, and the magnetic fieldB, as
well as its values of the order of the anomalous diffusion.

Table 1 Parameter dependence ofD, The parameters’ ranges are
1 ≤ T ≤ 100 keV, 1019 ≤ n ≤ 1021 m−3, 1 ≤ B ≤ 10
Tesla. The ITER-89 dependence ofD in the table as-
sumesD ∼ ρ2/τE.

Model D ∝ TαmβnγBδ · · · Values

ITER-89

√
P
m

n−0.1B−0.2 ∼ 1 m2/s

CASE-A:∆` = n−1/3

√
T
m

n−1/3B0 0.1-2

CASE-B:`B =

√
~

qB

√
T
m

n0 B−0.5 0.01-0.3

Neo-classical

√
m
T

n B−2 ∼ 0.01

In the case of the most common fusion plasma (e.g.
T = 10 keV, n = 1020 m−3 and B = 3 T), however,
the value of the diffusion coefficients by our model are
DCASE−A ∼ 0.30 m2/s andDCASE−B ∼ 0.08 m2/s, both of
which are one order smaller than the anomalous diffusion.
Moreover, which characteristic lengthL is right one is an
open question.

From Eq. (5), the diffusion coefficientDG of the gyra-
tion center is

DG ∼
〈
(∆rG)2

〉

τc
= v0L

1 +

(
~

qBL2

)2
 . (16)

For L � `B =
√
~/qB, the diffusion of the gyration

center is determined byL, i.e. DG ∼ v0L, otherwise
DG ∼ v0`

4
B/L

3. In most fusion plasmas, the interparticle
separation is much shorter than the magnetic length, i.e.
∆` � `B, so thatDG ∼ v0`B. This leads to

√
T/m scaling

of the diffusion coefficient D, irrespective of the selection
of the length scaleL.

4 Conclusion

The diffusion coefficientsD by our model give similar de-
pendence to experiments on many parameters, such as the
temperatureT, the massm, the densityn, and the magnetic
field B, as well as its values larger than the neo-classical
diffusion.
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