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 In this paper, the propagation of high power and short laser pulse in plasma medium is investigated. To do this 
aim, the particle model of plasma and particle-in-cell (PIC) computational method is used. The Maxwell equations 
are solved on a lattice and the relativistic Lorentz equation, by interpolation of the electromagnetic fields on the 
particles, leads to the temporal evolution of the phase space of the particles. The sources (ρ and J) are interpolated 
self-consistently. The equations are discretized with finite difference method and the Leapfrog differencing method 
is used to perform the computations for fields. The results are in a very good consistency with the current theories 
of the wave propagation in plasmas. The energy loss, dispersion and the change in the shape of the pulse due to the 
interaction with the electrons are shown and discussed. The obtained results can be used in the study of laser-
plasma interactions especially in fast ignition approach to laser fusion process. 

 
Keywords: Particle-in-cell (PIC), Laser-Plasma Interaction, Particle Simulation, Fast Ignition, Pulse Propagation 

in Plasma. 

1. Introduction 
A plasma medium can be considered as a large 

number of charged particles moving in their self-consistent 
electric and magnetic fields. The physics of such system 
can be studied by computer modeling simulation. Among 
the most successful models for computer simulation of 
plasma are particle models. This model becomes more 
practical in near-critical plasma. In this region the 
equations of state are not accessible and therefore the fluid 
description of the system can be no longer valid. 

The particle behavior of the plasma also becomes 
dominant during the interaction of high power short pulse 
laser 5(10 )s−  with the charge particle. For this interaction 
regime, the electron motion in the presence of intense light 
wave is highly relativistic. As we wish to model our system 
in high-temperature, the effects are very weak, so the 
plasma can be considered as a large number of collisionless 
particles. Therefore the propagation of the laser pulse in the 
plasma medium can be investigated by using 
particle-in-cell (PIC) computer simulation method. 

On physical grounds the particle simulation of plasma 
in the region mentioned above is in focus of interest for 
study the relativistic laser-plasma interaction in laser fusion 
experiments especially in fast ignition approach. Many 
researchers have also studied the phenomena which accrue 
in laser plasma accelerators and X-ray lasers by PIC 

method. Since we are interest in systems containing more 
than 4N 3 10× particles, the total number of arithmetic 
operations required to evaluate directly the force on each 
particle due to all other particles of the system will be of 
the order of 210Nη = . Calculation of this magnitude is 
totally impractical for exploring the physics of plasma. For 
this reason one may view each particle in a simulation as 
representing many particles of a real plasma namely 
superparticle. In addition, instead of computing direct 
interactions between particles we use particle-mesh model 
in our calculations. 
 

2. Particle in cell (PIC) method 
In this scheme, particles are defined in continuum 

space in both position and velocity whereas fields are 
defined at discrete locations in space. The values of particle 
and field are advanced sequentially in time. The equations 
of motion of particle evolve in each time step / 2tΔ , using 
electromagnetic fields interpolated from the discrete grid to 
the continuous particle locations. The term for charge and 
current sources, ρ and J, are interpolated self consistently 
on the discrete mesh points and the Maxwell equations are 
then advanced on time step. This procedure will be 
repeated in the next time step. The electromagnetic fields 
evolve according to the Maxwell equations: 
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∂

= −∇×
∂
B E ,    (1) 

t
∂

= −∇× −
∂
D H J ,   (2) 

subject to initial conditions: 
 

. ρ∇ =D ,    (3) 

. 0∇ =B .    (4) 
 
The particle positions and velocities obey the Newton-
Lorentz equations of motion: 
 

( )d m q
dt

γ = = + ×v F E v B ,  (5) 

d
dt

=
x v ,    (6) 

where the relativistic factory γ  is given by 
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Eqs. (5) and (6) are discretized using the second-order 
leapfrog scheme. The leapfrog finite-difference 
approximations to Eqs. (5) and (6) are  
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With ( )/ 2 / 2 / 2t t t t tγ γ γ−Δ +Δ= + . 

The instability of above equations can be verified 
through the Boris's algorithm. Based on this algorithm the 
term, / 2t tu +Δ can only appear in one side of Eq. (7). The 
general finite-difference forms of Eqs. (1) and (2) can be 
written as : 

 
t i j k k jD H Hδ δ δ= − ,   (10) 

t i j k k jB E Eδ δ δ= − + ,   (11) 

 
Where i, j and k denote the indices of an orthogonal 

right-handed set of coordinates. qδ denotes some 
finite-difference operator with respect to the variable q . 
In order to perform the numerical implementation of Eqs. 

(9) and (10) in PIC codes we use a centre difference for the 
differentials δ , and place the fields on the mesh. In this 
manner D, E and J are defined at the midpoints of the 
segments connecting mesh nodes. The centre difference 
forms of Eqs. (9) and (10) on a uniform mesh become: 
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To complete the discrete model we require 

prescriptions for obtaining the charge density at mesh 
points from the distribution of superparticles and for 
obtaining the forces at superlattice positions from the 
mesh-defined electric fields. The charge density at mesh 
point p is given by the total charge in the cell surrounding 
mesh point p divided by the cell volume: 

 

( ) 0
14

pN
n ns
p i p
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W x xρ ρ

=
= − +∑  ,   (14) 

 
 Where 0, ,  ,  ρs jN H x and px pH= are the 

number of electrons per unit length, the cell width, 
background density charge, the position of the 
superparticle i  in the cell and coordinate of particle p , 
respectively. The charge assignment function W used in 
Eq.(14) is : 

 
 

(15) 
 
 

 
 

3. Results and Conclusions 
In the present work, we have performed the 

numerical code based on PIC method to investigate the 
propagation of laser pulse in a plasma medium. To do so, 
the envelope spatial shape of the laser pulse has been 
considered as a Gaussian-shaped profile. We also 
assumed that the pulse propagates in the z direction. 
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Fig.1. The spatial shape of the pulse in the plasma medium. 
 
The time width of the pulse is 0.3 1

pω −  which for 
electron density 17 310 / cmn =  will be of the order of  
10 fs and the power of the pulse is ~ TW. Evolution of the 
pulse in the medium is evaluated by solving the equations 
of motion and Maxwell equations consistently using initial 
boundary conditions. 
 

  
Fig.2. Propagation of laser pulse in plasma for scaled time 

10 1
pω −  . 

 
Fig.3. Same as Fig.1 for 20 1

pω − . 

 

 

Fig.4. Same as Fig.1 for 40 1
pω − . 

 The spatial shape of the pulse in the plasma medium 
is illustrated in figure (1). In figures (2)-(4) the results 
obtained for scaled times, 10 1

pω − , 20 1
pω − , and 40 1

pω −  

have been shown. Here 2
0p ene mω ε= is plasma 

frequency and 2
0D kT neλ ε=  is the Debye wave 

length.  
 

References 
 
[1]       J. M. Dawson, Rev. Mod. Phys. 55, 403 (1983). 

[2] C. K. Birdsall and A. B. Langdon, Plasma Physics via 
Computer Simulation, (The Adam Hilger Series on Plasma 
Physics, 1991). 

[3] R. W. Hockney and J. W. Eastwood, Computer 
Simulation Using Particles, (New York: McGraw-Hill, 
1981). 

[4] M. Tabak. et al, Phys. Plasmas. 1, 1626 (1994). 
[5] J. Meyer-ter-vehn, Plasma. Phys. Control. Fusion. 47, 

A231 (2001). 
[6] R. Bingham, J.T. Mendoca and P.Shukla, Plasma Phys. 

Control. Fusion, 46, R1 (2004). 
[7] D. C. Eder. et al, Phys. Plasma 1, 1744 (1994). 
[8] J. P. Verboncoeur, Plasma Phys. Control. Fusion 47, A231 

(2005). 

P2-64

500


	Button29: 
	Button30: 


