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The microwave plasma heating has a strong influence on collisional transport, experimentally observed both
in stellarators and tokamaks. The estimate of the interplaybetween heating and collisional transport implies
solving a 5D kinetic equation. We deal with this problem using a recently developed code (ISDEP: Integrator
of Stochastic Differential Equations for Plasmas) in a tokamak with ripple as atest device, introducing the
heating effects. In this work we develop a method for a non-linear computation of the time-dependent plasma
temperature profile, based on several linear calculations.The influence of heating on the relevant transport
parameters, on plasma rotation and on the velocity distribution function is studied.
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1 Introduction

Transport and heating are usually described as separated
processes. The former is customarily solved by fluid equa-
tions and the latter, which is considered as a source term
of the transport set of equations, is calculated in the frame-
work of kinetic theory. However, there exist several phe-
nomena that show that transport is modified by the heat-
ing effects (see e.g. [1, 2]), due to the interplay between
microwave plasma heating and transport, and must be es-
timated solving the 5D kinetic equation (3D in space and
2D in momentum space).

In this work we solve simultaneously the ion trans-
port and heating in the non-linear regime, taking advan-
tage of the equivalence between the linear Fokker Planck
(FP) and Langevin equations [4]. As it is well-known, the
FP equation is a collective description of the system, i.e.
an equation for the distribution function in phase space
f (t, x). An equivalent form is describing the system with
a Langevin equation, which is a Stochastic Differential
Equation (SDE) for a single particle, where the variation
of xi , the phase space coordinate, depends on a determinis-
tic term, proportional to dt, and on a random term dWi that
describes a Wiener process [4].

We use ISDEP, a Monte Carlo code that calculates
the ion kinetic transport by following the guiding centre
orbits in the presence of electric field, including ion-ion
[3] and ion-electron collisions [5]. We introduce in the
equations a new term that estimates the microscopic quasi-
linear wave-particle interaction and was firstly written in
Langevin form in [6]. As we deal with ion transport, the
heating method that we will consider is direct Ion Cy-
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clotron Resonance Heating (ICRH), in the range of second
harmonic of ion cyclotron resonance frequency, which is
based on launching resonant electromagnetic waves from
the edge of the confined plasma. In our case, the random-
ness represented by the Wiener processes of the interac-
tion is related to the collisions with the background plasma
and with the random relative phase between particles gy-
romotion and waves. In this work, we do not introduce any
kind of turbulent transport yet. The wave-particle interac-
tion is formally the same as in the ECRH case, i.e., it can
be considered as a resonant diffusion in momentum space.
We will include the nonlinear evolution of the background
temperature using a self consistent method, updating the
temperature at each step.

We choose a tokamak device with ripple instead of
a complex device, since we are interested in studying the
influence of the heating on transport rather than on the
confinement properties of a given magnetic configuration.
This application shows the the usability of stellarator tools
in 3D problems that appear in tokamaks.

2 Modeling of collisional transport and
heating.

2.1 The Langevin Equations for the system

The dynamics of the test particles is given by a set of
Langevin equations. This includes several physical fea-
tures and approximations. We study the evolution of the
guiding center position, the velocity square and the pitch:
xi = (~rgc, v2, λ), λ = v||/v. We also consider Coulombian
collisions with the background using the Boozer-Kuo Pe-
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travic collision operator.
The quasilinear wave-particle interaction used in this

work is a resonant process in phase space. The resonant
condition is satisfied with very small probability, but the
influence on (v2, λ) is very strong. We take a Gaussian
deposition profile centered at the magnetic axis. As we
will see, the final result is a global increase of the energy.

Schematically, the equations we are solving are:

d~rgc = ~v
gc(x) dt, (1)

dv2 =
(
Fgc

v2 (x) + Fcoll
v2 (x) + F ICH

v2 (x)
)
dt

+Gv2(x) ◦ dWv2
+GvA(x) ◦ dWA (2)

+GvB(x) ◦ dWB , (3)

dλ =
(
Fgc
λ

(x) + Fcoll
λ (x) + F ICH

λ (x)
)
dt

+Gλ(x) ◦ dWλ +GλA(x) ◦ dWA (4)

+GλB(x) ◦ dWB. (5)

The Wiener process is an independent increment stochastic
process (Gaussian distributed) such that:

dW j(0) = 0, 〈dW j(t)〉 = 0, (6)

〈dW j(t)dWk(t)〉 = δ jkdt. (7)

This process introduces diffusion phenomena in the
system evolution. Using Eqs. (1), (3) and (5) we can fol-
low particle trajectories in the confined plasma, affected by
electromagnetic fields using the guiding centre approxima-
tion: ~v gc, Fgc

v2 andFgc
λ

[7] and collisions with other parti-
cles via the Boozer operator:Fcoll

v , Fcoll
λ

Gv2 andGλ [8].
The functionsF ICH

v2 , F ICH
λ

, GvA, GvB, GλA andGλB can be
found in [6], although some misprints have been corrected.
Even though the work in [6] was developped for ECRH,
we take this model for 2nd harmonic of ICRH. The symbol
“◦” indicates that we are using Stratonovich algebra for the
SDE system [4].

The Monte Carlo method is used to integrate a large
number of independent trajectories and calculate the main
confinement properties as the average energy, particle and
heat fluxes, confinement time, etc. One of the main ad-
vantages of following independent trajectories is that the
simulations scale perfectly in massive parallel clusters.In
fact, all the calculations presented in this work have been
done using grid computing techniques, see e.g. [9].

2.2 Introduction of non linear effects

Linearizing the Boltzmann equation is equivalent to study
the test particles keeping fixed the background plasma.
This makes impossible the study of heating effects dur-
ing plasma evolution because no temperature rising will be
observed despite the fast ions will transfer their energy to
the background. To overcome this limitation while keep-
ing the benefits of the equivalence between the FP and the
Langevin approach, we allow time dependent temperature
profiles: T(ρ, t), which we shall fix self-consistently by
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Fig. 1 1D profiles: electrostatic potential (Φ) and its deriva-
tive, proportional to the electric field (dΦ/dρ), temper-
ature (T), density (n) and poloidal (Bp) and toroidal (BT)
magnetic fields. In this picture, the values withρ < 0 cor-
respond the high magnetic field side of the device while
ρ > 0 refers to the low field side. All the profiles except
BT are symmetric in the poloidal angle.

identifying the time evolution of the temperature of the test
particles with that of the field particles [5]. Note that time
dependent profiles are allowed in a linear FP equation, the
iterative method is the key point to introduce non lineari-
ties, as will be explained below. In this work we keep con-
stant the background density, assuming that the sources are
able to supplement the particle losses.

We use as temperature profile the average kinetic en-
ergy in an interval of∆ρ = 0.1 centered inρ at a timet:
v2(ρ, t). Let qi be the quotient of the average kinetic en-
ergy in thei-th iteration with ICH and the energy without
ICH. Then, in the iterationi +1 we take as temperature the
initial profile multiplied byqi :

qi(ρ, t) =
v2

i (ρ, t)

v2(ρ, t)
, Ti+1(ρ, t) = T0(ρ) qi(ρ, t) .(8)

We stop iterating whenTi+1(ρ, t) = Ti(ρ, t) within errors,
which is our self-consistent profile.

2.3 The tokamak model

In our test device, the plasma is a circular torus with ma-
jor radiusR0 = 1 m and minor radiusa = 0.2 m. The
main magnetic field (B0 = 1 T) as well as a small ripple,
(∼ 0.01B0) is created by 32 toroidal coils. The expres-
sion for the rippled magnetic field is obtained from [10].
The ripple does not modify the toroidal magnetic flux in
an appreciable way (∼ 0.01%, estimated by numerical in-
tegration), so we can take the usual expressionρ = r/a.
ICH microwaves are launched by two antennae located in
opposite angles of the torus. We plot the shape of the main
profiles in Fig. 1.
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3 Numerical results

We use aKloeden-Piersenalgorithm [4] for solving our
SDE system. It is similar to a second order Runge Kutta
method for a given SDE forX(t):

dXi = F i(X, t) dt +Gi
j(X, t) ◦ dW j , (9)

Xi
n+1 = Xi

n +
δ

2

(
F i(Xn) + F i(Xp)

)
+

1
2

(
Gi

j(Xn) +Gi
j(Xp)
)
∆W j , (10)

Xi
p = Xi

n + F i(Xn)δ +Gi
k(Xn)∆Wk. (11)

This method converges weakly (for the averages, see [4])
with order δ2 (δ = tn+1 − tn.) for a 1D multiplicative
noise. Unfortunately, we are dealing with 4D multiplica-
tive noises and we find convergence up to orderδ (specially
in the ICH case).

We perform several linear simulations updating the
temperature according to (8) and we stop iterating when
we reach the self-consistent profile inv2 (Fig. 3). The
main results of this work are the comparison of fluxes, ve-
locities, distribution functions and other relevant quantities
between simulations with and without heating. In Fig. 2
we show the time evolution of several plasma features in
both cases: persistenceP (defined as the fraction of surviv-
ing particles), effective radius and kinetic and total energy.
It can be seen that the persistence of particles falls faster
in the case of ICH. This is not surprising since the aver-
age energy is increased and so does the outward flux. We
calculate the confinement times fittingP(t) to e−t/τ. The
average radius also increases in the case of ICH for times
larger than the typical collision one, showing again the in-
crease of the outward particle flux. The average energy
rises for times larger than 10−3 s, showing the obvious ef-
fect of plasma heating and the typical time scale in which
the power absorption is relevant. The change of the aver-
age squared velocity is, not surprisingly, very similar to the
energy one.

Also we calculate the toroidal and poloidal velocity
profiles (Fig. 3). We see that the poloidal velocity does not
change because it depends mostly on the~E × ~B drift, and
it is not modified in the system. On the other hand,vφ is
strongly influenced by ICH, because ifv2 grows whilevθ
is constant, thenvφ increases. This increment, focused on
ρ ≃ 0, is propagated radially via transport processes.The
evolution of the particle flux profile is plotted in Fig. 4,
which shows that this is always larger in the presence of
heating, especially fort > 10−3 s, which is the typical time
scale for plasma heating to be relevant. The steady state
flux is monotonic, as corresponds to the absence of sources
or sinks. The heat flux profile evolution (Fig. 5) is again
monotonic in steady state (t = 5 · 10−2 s), but the gradient
in the centre of the device is much larger in the case of
ICH than in the one without heating, since the heat source
is located close toρ = 0.
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Fig. 2 Evolution (with and without ICH) of the persistenceP
(upper left), average effective radius,ρ (upper right), total
energyET (lower left) and kinetic energy (lower right) in
units of mc2/2. Confinement times areτ = 0.0387(8) s
andτICH = 0.0212(9) s. We can observe the heating effect
for t > 10−3 s.
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Fig. 3 Iterations of thev2 profile (upper, left), Binder cumulan
(upper, right), poloidal velocity (lower, left) and toroidal
velocity (lower, right), measured int = 5 · 10−2 s.
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Fig. 4 Particle fluxes.
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Fig. 5 Heat fluxes.

Fig. 6 Velocity probability distribution functions, as a function
of the velocity and the toroidal angle without ICH.

We compute and compare the probability distribution
function (v2 · f (v, φ)), in terms ofv andφ (Fig. 6). We find
that with a small ripple (1%)f (v, φ) does not depend onφ
in any case, which implies that the parallel transport is able
to overcome the local heating produced by the antennae as
well as the ripple effects. It is clear that the effect of heat-
ing tends to make the distribution function wider , rising
its tail and creating an important number of suprathermal
ions. The Binder cumulant, defined asκ := 〈v4〉/〈v2〉2,
measures deviations from the Maxwellian distribution (Fig
3). In the plasma without ICH, the cumulant is equal to 5/3
at every time, except in the outer plasma radius where an
increase of fast particles due to the transport is observed.
The ICH plasmas show clear effects of heating with a cu-
mulant larger than the Maxwellian value.

4 Conclusions

We have estimated for the first time the combined effects
of ion collisional transport and heating outside the frame of

Fig. 7 Velocity probability distribution functions with ICH.

the linear approximation. To do that, we have developed
a nonlinear kinetic method based on Langevin equations
for transport and quasi linear heating. For the moment,
we have considered a non-realistic model for the electric
field created by ICRH waves. We modify the background
temperature with an iterative method, allowing a real in-
crement of the particle energy. This method makes possi-
ble the numerical solution, for any geometry and wave, of
the collisional transport in phase space. The only approx-
imations are considering collisional transport in a frozen
electrostatic potential and assuming that wave-particle in-
teraction is well described by quasi-linear theory. We have
particularized our model to the geometry of a tokamak
with ripple, avoiding for the moment the effects of more
complex geometries to concentrate ourselves in the heat
and transport interplay. This computer code can be eas-
ily adapted to another geometries and plasma profiles, like
stellarator or ITER geometries.
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