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Geometric conditions for quasisymmetric toroidal plasmas with large mean flows on the order
of the ion thermal speed are investigated. Equilibrium momentum balance equations including
the inertia term due to the large flow velocity are used to show that, for rotating quasisymmetric
plasmas with no local currents crossing flux surfaces, all components of the metric tensor should be
independent of the toroidal angle in the Boozer coordinates, and consequently these systems need
to be rigorously axisymmetric. Unless the local radial currents vanish, the Boozer coordinates do
not exist and the toroidal flow velocity cannot take any value other than a very limited class of
eigenvalues corresponding to very rapid rotation especially for low beta plasmas.

PACS numbers: 52.25.Xz, 52.55.Hc

I. INTRODUCTION

There have been numerous studies on plasma flows
as an attractive means for improving plasma confine-
ment [1]. Sheared E × B flows are considered to cause
the reduction of transport observed in internal trans-
port barriers (ITBs) [2] and high-confinement modes (H-
modes) [3]. Microscopic oscillatory flow structures called
zonal flows also play important roles in regulating micro-
turbulence [4, 5]. For axisymmetric systems, large mean
flows on the order of the ion thermal velocity vT can
be produced in the toroidal direction, and the toroidal
flows are counted on to avoid dangerous instabilities such
as resistive wall modes in tokamaks [6]. Similarly, in
nonaxisymmetric or helical systems such as stellarators
and heliotrons [7], plasma mean flows and zonal flows
are closely connected to both neoclassical and turbulent
transport processes [8–15] and it is important to investi-
gate conditions for magnetic geometry to allow large flow
velocities.

It was shown by Helander [16] that, in order for the
large mean flows of O(vT ) to occur in general three-
dimensional configurations, the magnetic field strength
should be given by a function of the flux surface label
and the arc length along the field line. This condition is
called isometry [17] or omnigenity [18] and it is satisfied
by the quasisymmetric magnetic configurations [19, 20]
where the magnetic field strength is given as a function of
the radial coordinate and one of or a linear combination
of the toroidal and poloidal angle coordinates. If flow ve-
locities are of O(δvT ), where the drift ordering parameter
δ is given by the ratio of the thermal gyroradius ρT to the
equilibrium gradient scale length L, bounce-averaged ra-
dial drift velocities of ripple-trapped particles vanish and
accordingly neoclassical transport is significantly reduced
in quasisymmetric and quasi-omnigenous systems [18].
Therefore, these systems have been intensively investi-
gated as advanced concepts of helical devices [21–26].
It is also shown for quasisymmetric toroidal configura-
tions with mean flows of O(δvT ) that neoclassical par-
ticle fluxes are intrinsically ambipolar [9, 27, 28], which

implies that the radial electric field and accordingly the
mean flow velocity in the direction of quasisymmetry can
freely take any values even if the background density and
temperature gradients are fixed. Recently, Simakov and
Helander [29] treated rapid plasma rotation in quasisym-
metric systems although they still assumed the plasma
flow Mach number to be low in order to neglect effects of
the inertia term due to the rapid flow on the equilibrium
force balance.

In this paper, geometric conditions for quasisymmetric
toroidal plasmas with large mean flows on the order of
the ion thermal speed are investigated in detail by includ-
ing the flow inertia term in the force balance. We here-
after consider quasi-axisymmetric systems although re-
sults shown in the present work can be straightforwardly
extended to general quasisymmetric systems. Our pre-
vious study [30] showed that, for such rapidly-rotating
quasisymmetric plasmas, an additional symmetry condi-
tion for a component of the metric tensor need to be
satisfied in order for the Boozer coordinates [31] to exist.

In Sec. II, it is shown that, for quasisymmetric mag-
netic configurations with the large mean flows of O(vT )
in the direction of quasisymmetry, the equilibrium den-
sities, temperatures, electrostatic potential, angular flow
velocity, and the Jacobian associated with the flux coor-
dinates are all independent of ζ, where ζ is used as the
angle coordinate associated with quasisymmetry. Here,
the temperatures and electrostatic potential should be
flux-surface functions to the lowest order in δ and the
potential needs to be independent of ζ up to the next
order, which shows a contrast to the case of Ref. [29]
where the potential is assumed to break this symmetry
condition. We also find that local currents crossing flux
surfaces should vanish or large mean flows cannot take
any values except for impractical eigenvalues. For the
case of no local radial currents, we can use the Boozer
coordinates to represent several geometric constraints im-
posed by the equilibrium momentum balance equations
including the inertia due to the large flows.

In Sec. III, additional conditions for the metric ten-
sor are obtained by using formulas of differential geom-
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etry [32] for toroidal flux surfaces. The geometric equa-
tions from Sec. III are solved in Sec. IV to show that, for
quasisymmetric toroidal plasmas with large mean flows
of O(vT ), all components of the metric tensor should be
independent of ζ. This consequence is strongly restrictive
and it leads to the conclusion that the rapidly-rotating
quasisymmetric systems should be rigorously axisymmet-
ric. Finally, Sec. V summarizes results from the present
work and Appendices A, B, and C are added to give ex-
planations about eigenvalues of the flow velocities, trans-
formation of flux coordinates, and basics of differential
geometry for surfaces, respectively.

II. EQUILIBRIA OF QUASISYMMETRIC
ROTATING PLASMAS

We consider toroidal plasmas, in which the magnetic
field B is written in terms of the flux coordinates (s, θ, ζ)
as

B = ψ′∇s×∇θ + χ′∇ζ ×∇s = Bs∇s + Bθ∇θ + Bζ∇ζ,
(1)

where s is an arbitrary label of a flux surface, θ and ζ
represent the poloidal and toroidal angles, respectively,
and ′ ≡ ∂/∂s denotes the derivative with respect to s.
The toroidal and poloidal fluxes within the volume inside
the surface with the label s are given by 2πψ(s) and
2πχ(s), respectively. The contravariant components of
the magnetic field B are given from Eq. (1) as

Bs = 0, Bθ = χ′/
√

g, Bζ = ψ′/
√

g, (2)

where
√

g ≡ [∇s · (∇θ ×∇ζ)]−1 represents the Jacobian
for the flux coordinates (s, θ, ζ).

Hereafter, we investigate quasisymmetric toroidal sys-
tems with large mean flows on the order of the ion ther-
mal velocity vT . The O(vT ) equilibrium flow should be
tangential to the direction of quasisymmetry, in which
the field strength B is uniform. Here, for simplicity, we
restrict our consideration to the quasi-axisymmetric case,
in which the magnetic field strength B is independent of
the toroidal angle ζ,

∂B/∂ζ = 0, B = B(s, θ), (3)

although we can treat general quasisymmetric cases
such as quasi-poloidally-symmetric and quasi-helically-
symmetric ones in the same way as shown below. When
using the perturbative expansion in terms of the drift or-
dering parameter δ defined by the ratio of the ion thermal
gyroradius ρT to the equilibrium gradient scale length L,
the lowest-order momentum balance equation reduces to

E0 +
V0

c
×B = 0. (4)

Here, the lowest-order electric field is given by E0 =
−∇Φ0(s) = −Φ′0(s)∇s and the lowest-order electro-
static potential Φ0(s) is a flux-surface function satisfying

eaΦ/Ta = O(δ−1), where ea is regarded as a quantity
of O(δ−1). In the same way as shown in Refs. [16, 33]
we find from the lowest-order kinetic equation that the
equilibrium flow velocity V0 of O(vT ), which consists of
the E×B drift and the parallel flow components, should
be represented by

V0 = V ζ ∂x
∂ζ

, V ζ = −c
Φ′0(s)
χ′(s)

, (5)

and that the following incompressibility condition and
other constraints hold,

∇ ·V0 = b · ∇V0 · b = 0,

∇ · ∂x
∂ζ

= 0,
∂
√

g

∂ζ
= 0

V0 · ∇na = V0 · ∇Ta = 0
B · ∇Ta = 0
na = na(s, θ), Ta = Ta(s) (6)

where na and Ta are the lowest-order density and tem-
perature of the particle species a, respectively. In the
presence of the large flow velocity V0, na is not uni-
form over the flux surface while Ta is still a flux-surface
function as in the case of the conventional equilibrium
without V0. We also see from Eq. (6) that the density
na and the Jacobian

√
g are independent of ζ like the

field strength B.
Using Eqs. (4) and (5) we have

∇×
(

∂x
∂ζ

×B
)

= c∇×
(

Φ′0(s)
V ζ(s)

∇s

)
= 0, (7)

which leads to

∂x
∂ζ

· ∇B = B · ∇∂x
∂ζ

. (8)

Equation (8) is also derived from

∂Bθ

∂ζ
=

∂Bζ

∂ζ
= 0 (9)

which are immediately obtained from Eq. (2) and
∂
√

g/∂ζ = 0 in Eq. (6). Then, using B2 = BθBθ +BζBζ ,
∂B/∂ζ = 0, and Eq. (9), we find

∂Bθ

∂ζ
+ q

∂Bζ

∂ζ
= 0, (10)

where q ≡ Bζ/Bθ = ψ′(s)/χ′(s) represents the safety
factor.

Each term of the lowest-order momentum balance
equation shown in Eq. (4) has no component in the di-
rection parallel to the magnetic field. To the next order,
the parallel momentum balance equation for the particle
species a is written as

B · (naeaE1 −∇pa − namaV0 · ∇V0) = 0, (11)
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where ma denotes the mass of the particle species a, the
electric field E1 = −∇Φ1 is given by the first-order elec-
trostatic potential Φ1 and the pressure is represented by
pa = naTa. Here, eaΦ1/Ta = O(1) and we generally have
B · ∇Φ1 6= 0 in contrast to B · ∇Φ0 = 0. Using Eqs. (6),
(8), and (11), we get

B·∇
(

ln na +
ea

Ta
Φ1 − ma

2Ta
(V ζ)2gζζ

)
+

ma

Ta
(V ζ)2

∂Bζ

∂ζ
= 0,

(12)
where gζζ ≡ |∂x/∂ζ|2. For electrons (a = e), Eq. (12) is
written by neglecting the electron mass me as

B · ∇
(

ln ne − e

Te
Φ1

)
= 0, (13)

which implies that (ln ne−eΦ1/Te) is a flux-surface func-
tion. Therefore, Φ1 is independent of ζ like ne,

∂Φ1/∂ζ = 0, Φ1 = Φ1(s, θ). (14)

This result is contrastive to the study by Simakov and
Helander [29] for rotating quasisymmetric plasmas with
low Mach number flows, in which non-intrinsically am-
bipolar particle fluxes due to the symmetry-breaking
electrostatic potential are considered. We now define the
ζ-averaged part A = (2π)−1

∮
Adζ and the ζ-dependent

part Ã = A− A for an arbitrary function A of ζ. Then,
Eq. (12) is rewritten as

Bθ ∂

∂θ

(
ln na +

ea

Ta
Φ1 − ma

2Ta
(V ζ)2gζζ

)

+
ma

Ta
(V ζ)2

(
−1

2
B · ∇g̃ζζ +

∂Bζ

∂ζ

)
= 0, (15)

which is separated into the ζ-averaged and ζ-dependent
parts,

Bθ ∂

∂θ

(
ln na +

ea

Ta
Φ1 − ma

2Ta
(V ζ)2gζζ

)
= 0,

−1
2
B · ∇g̃ζζ +

∂Bζ

∂ζ
= 0. (16)

The species summation of the equilibrium force bal-
ance is written to the lowest order as

(∑
a

nama

)
V0 · ∇V0 =

1
c
J×B−∇p, (17)

where the current density J is given by Ampère’s law ∇×
B = (4π/c)J and p =

∑
a pa is the total kinetic pressure.

The inertia term resulting from the flow velocity V0 is
included in Eq. (17). Then, taking the inner product
between Eq. (17) and ∂x/∂ζ, we obtain

1
2

(∑
a

nama

)
(V ζ)2

∂gζζ

∂ζ
=

χ′

c
Js =

Bθ

4π

(
∂Bζ

∂θ
− ∂Bθ

∂ζ

)
,

(18)

In the rigorous axisymmetric case, ∂gζζ/∂ζ = 0 holds
although this condition is not trivially satisfied for the
quasi-axisymmetric case. If ∂gζζ/∂ζ 6= 0, then Eq. (18)
leads to nonzero local radial current Js 6= 0. This gives
rise to a serious problem because the quasisymmetric sys-
tem is considered usually by using the Boozer coordinates
while the Boozer coordinates cannot be constructed for
the case of Js 6= 0. Let us consider this point below in
more detail. Differentiating Eq. (18) with respect to ζ
and using Eqs. (10) and (16), we obtain

(B · ∇)2g̃ζζ = 4π

(∑
a

nama

)
(V ζ)2

∂2g̃ζζ

∂ζ2
. (19)

It is shown in Appendix A that nontrivial solutions of
Eq. (19) exist only if the toroidal flow velocity V ζ(s)
takes one of eigenvalues determined by Eq. (A9) for each
flux surface. As discussed in Appendix A, this constraint
on V ζ is so restrictive that we hereafter assume a trivial
solution g̃ζζ = 0 of Eq. (19) and accordingly

∂gζζ/∂ζ = 0. (20)

Then, we find from Eq. (18) that the radial current van-
ishes,

Js = 0. (21)

Appendix B shows that, for the case of Js = 0, there ex-
ist the Boozer coordinates in which the covariant poloidal
and toroidal components, Bθ(s) and Bζ(s), of the mag-
netic field are flux-surface functions. It is also shown in
Appendix B that, without loss of generality, we can re-
gard the flux surface (s, θ, ζ) as the Boozer coordinates
from the beginning for systems considered in this section.
Thus, we hereafter assume (s, θ, ζ) to be the Boozer co-
ordinates. Using Eq. (20) and the relations between the
covariant and contravariant components of the magnetic
field,

Bθ(s) = gθθB
θ + gθζB

ζ , Bζ(s) = gθζB
θ + gζζB

ζ

(22)
we find that the components gθθ, gθζ , and gζζ of the
metric tensor are all independent of ζ,

∂gθθ/∂ζ = ∂gθζ/∂ζ = ∂gζζ/∂ζ = 0. (23)

Then, the contravariant metric tensor component gss =
[gθθgζζ − (gθζ)2]/g is independent of ζ, too,

∂gss/∂ζ = 0. (24)

Using Eq. (23) and taking the covariant poloidal and
radial components of Eq. (17), we obtain

1
2

(∑
a

nama

)
(V ζ)2

∂gζζ

∂θ
=

∂p

∂θ
, (25)
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and
(∑

a

nama

)
(V ζ)2

(
∂gsζ

∂ζ
− 1

2
∂gζζ

∂s

)

=
χ′

4π
√

g

[(
∂

∂θ
+ q

∂

∂ζ

)
Bs −

(
∂Bθ

∂s
+ q

∂Bζ

∂s

)]
− ∂p

∂s
,

(26)

respectively. Furthermore, taking only ζ-dependent part
·̃ · · of Eq. (26) yields

(∑
a

nama

)
(V ζ)2

∂g̃sζ

∂ζ
=

χ′

4π
√

g

(
∂

∂θ
+ q

∂

∂ζ

)
B̃s.

(27)
Noting that Bs = gsθB

θ + gsζB
ζ , we regard Eq. (27) as

the constraint imposed on the components gsθ and gsζ of
the metric tensor.

III. GEOMETRIC CONDITIONS FOR
TOROIDAL FLUX SURFACES

In this section, we further investigate the conditions
considered in Sec. II for quasisymmetric toroidal plas-
mas with large mean flows on the order of the ion thermal
speed. Here, the quasi-axisymmetric case is considered
again as an example even though general quasisymmet-
ric cases can be treated similarly. We also recall that
the Boozer coordinates (s, θ, ζ) are used and that the
field strength B, the Jacobian

√
g = [∇s · (∇θ ×∇ζ)]−1

and the components gαβ (α, β = θ, ζ) of the metric
tensor are all independent of ζ as shown in the previ-
ous section. Accordingly, the contravariant component
gss ≡ [gθθgζζ − (gθζ)2]/g of the metric tensor is indepen-
dent of ζ, too.

In order to examine properties of toroidal flux surfaces,
we hereafter use several quantities defined in the differen-
tial geometry of surfaces such as the Christoffel symbols
and the Riemann curvature tensor [32]. Definitions of
these quantities for general surfaces are briefly described
in Appendix C. Using the components gαβ (α, β = θ, ζ)
of the metric tensor for each flux surface, which are inde-
pendent of ζ, the Christoffel symbols Γγ

αβ (α, β, γ = θ, ζ)
are given from Eq. (C2) as

Γθ
θθ =

gζζ∂θgθθ − 2gθζ∂θgθζ

2ggss
,

Γθ
θζ = −Γζ

ζζ = −gθζ∂θgζζ

2ggss
,

Γθ
ζζ = −gζζ∂θgζζ

2ggss
,

Γζ
θθ =

−gθζ∂θgθθ + 2gθθ∂θgθζ

2ggss
,

Γζ
θζ =

gθθ∂θgζζ

2ggss
, (28)

where ∂θ = ∂/∂θ and ggss = gθθgζζ − (gθζ)2 are used.
The nonzero component Rθζθζ of the Riemann curvature
tensor is derived from using Eq. (C3) and the Christoffel
symbols in Eq. (28) as

Rθζθζ = −
√

ggss

2
∂

∂θ

(
∂θgζζ√
ggss

)
. (29)

We now represent the Fourier series expansion of an
arbitrary function Q of ζ by

Q =
∞∑

n=−∞
Qn exp(−inζ). (30)

The components L, M , and N of the second fundamental
form for flux surfaces are evaluated by using Eq. (C7).
The Fourier coefficients of their ζ-dependent parts L̃, M̃ ,
and Ñ are written as

L̃n =
√

gss∂θ(g̃sθ)n

+ (g
√

gss)−1

[
(g̃sθ)n

(
−1

2
gζζ∂θgθθ + gθζ∂θgθζ

)

+ (g̃sζ)n

(
1
2
gθζ∂θgθθ − gθθ∂θgθζ

)]
,

M̃n =
1
2
√

gss[∂θ(g̃sζ)n − in(g̃sθ)n]

+
1
2
(g
√

gss)−1(∂θgζζ)[gθζ(g̃sθ)n − gθθ(g̃sζ)n],

Ñn = −in
√

gss(g̃sζ)n

+
1
2
(g
√

gss)−1(∂θgζζ)[gζζ(g̃sθ)n − gθζ(g̃sζ)n].

(31)

Since the n = 0 Fourier component of the ζ-dependent
part ·̃ · · vanishes, we hereafter consider only the case of
n 6= 0. We find from Eq. (C9) that L̃n, M̃n, and Ñn,
satisfy the Fourier-transformed version of the Codazzi-
Mainardi equations,

−inL̃n − ∂θM̃n = Γθ
θζL̃n + (Γζ

θζ − Γθ
θθ)M̃n − Γζ

θθÑn,

−inM̃n − ∂θÑn = Γθ
ζζL̃n + (Γζ

ζζ − Γθ
θζ)M̃n − Γζ

θζÑn,

(32)

which impose constraints on (g̃sθ)n and (g̃sζ)n through
the expressions in Eq. (31).

Substituting Eq. (31) into the second equation in
Eq. (32), we obtain the first-order ordinary differential
equation in θ,

∂θ(g̃sζ)n = Yn(g̃sθ)n + Zn(g̃sζ)n (33)

where

Yn ≡ −in− i

n

gζζ

gss√g

∂

∂θ

(
∂θgζζ√

g

)
,

Zn ≡ −∂θg
ss

gss
+

i

n

gθζ

gss√g

∂

∂θ

(
∂θgζζ√

g

)
. (34)
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Another first-order differential equation is given by sub-
stituting Eq.(31) into the first equation in Eq. (32) and
using Eq. (33) as

∂θ(g̃sθ)n = Wn(g̃sθ)n + Xn(g̃sζ)n (35)

where

Wn ≡ −2in
gθζ

gζζ
− i

n

gθζ

gss√g

∂

∂θ

(
∂θgζζ√

g

)

− g(gss)2

gζζ

[
∂

∂θ

(
∂θgζζ√

g

)]−1

× ∂

∂θ

[
gζζ

g(gss)2
∂

∂θ

(
∂θgζζ√

g

)]
,

Xn ≡ in
gθθ

gζζ
+ in

g(gss)2

gζζ

[
∂

∂θ

(
∂θgζζ√

g

)]−1

× ∂

∂θ

(
∂θ
√

gss

(gss)3/2√g

)

+
i

n

(gθζ)2

gζζgss√g

∂

∂θ

(
∂θgζζ√

g

)

+
g(gss)3

gζζ

[
∂

∂θ

(
∂θgζζ√

g

)]−1

× ∂

∂θ

[
gθζ

g(gss)3
∂

∂θ

(
∂θgζζ√

g

)]
. (36)

We also find that another condition for (g̃sθ)n and (g̃sζ)n

is derived from the Fourier transform of the radial equi-
librium force balance in Eq. (27) as

√
g

(
∂

∂θ
− inq

)(
(g̃sθ)n + q(g̃sζ)n√

g

)

= −in
4πg(

∑
a nama)(V ζ)2

(χ′)2
(g̃sζ)n (37)

Substituting Eqs. (33) and (35) into Eq. (37) yields the
linear relation between (g̃sθ)n and (g̃sζ)n,

Un(g̃sθ)n + Vn(g̃sζ)n = 0, (38)

where

Un ≡ Wn + qYn − inq − 1
2

∂θg

g
,

Vn ≡ Xn + qZn − inq2 − q

2
∂θg

g

+ in
4πg(

∑
a nama)(V ζ)2

(χ′)2
. (39)

Combining Eqs. (33) and (38) gives the first-order or-
dinary linear differential equation for (g̃sζ)n with (g̃sθ)n

eliminated. We can also obtain the first-order ordinary
linear differential equation for (g̃sθ)n without (g̃sζ)n by
using Eqs. (35) and (38). Now, it is questioned whether
nontrivial solutions (g̃sθ)n and (g̃sζ)n of these linear or-
dinary differential equations exist or not. Since these

equations contain the components gαβ (α, β = θ, ζ) of the
metric tensor and the Jacobian

√
g in very complicated

ways, we first consider the neighborhood of the magnetic
axis s = 0 to simplify the equations in the next section,
and then discuss the solutions in the whole toroidal vol-
ume region.

IV. SEARCH FOR THE METRIC TENSOR IN
QUASISYMMETRIC ROTATING PLASMAS

Here, we examine whether or not there exist nontriv-
ial solutions (g̃sθ)n and (g̃sζ)n of the linear ordinary dif-
ferential equations derived in the previous section. For
this purpose, we first investigate the neighborhood of the
magnetic axis and then consider the whole volume region
of the toroidal system. It should be recalled that we as-
sume quasi-axisymmetry ∂B/∂ζ = 0 with the Boozer co-
ordinates (s, θ, ζ) used for simplicity even though general
quasisymmetric cases can be treated in a similar way.

As shown in Eq. (B11), the Jacobian associated with
the Boozer coordinates is given by

√
g =

dV (s)/ds

4π2

〈B2〉
B2

, (40)

where V (s) represents the volume within the flux sur-
face labeled s. We find in Sec. II that

√
g is independent

of ζ when there exist toroidal flows on the order of ion
thermal speed. Along the magnetic axis s = 0,

√
g is in-

dependent of θ, too, and it takes a constant value which
is denoted by R0 ≡

√
gζζ(s = 0). Then, the total length

of the magnetic axis is represented by 2πR0. The field
strength B(s = 0) ≡ B0 at the magnetic axis is another
constant. In addition, gαβ (α, β = θ, ζ) and gss ≡ |∇s|2
are independent of ζ so that they take constant values
along the magnetic axis. Therefore, toroidal cross sec-
tions of flux surfaces near the magnetic axis are concen-
tric circles, the center of which is located at the magnetic
axis. The unit vector b = B/B along the magnetic field
line at s = 0 is in the toroidal direction and it is writ-
ten as b(s = 0) = R−1

0 ∂x(s = 0, ζ)/∂ζ. In the present
section, we define the radial coordinate s by ψ = 1

2B0s
2,

from which gss(s = 0) = 1 is derived. Therefore, s is the
radius length of the circular toroidal cross section of the
flux surface.

We now consider the neighborhood of a certain point
on the magnetic axis. This small local region is rep-
resented by r < ε and |∆z| < ε. Here, the cylindri-
cal coordinates (r, ϑ, z) is chosen such that the magnetic
field is written as B = Br r̂ + Bϑϑ̂ + Bz ẑ, where r̂, ϑ̂,
and ẑ are the orthogonal unit vectors in the r-, ϑ-, and
z-directions, respectively, and ẑ coincides with b at the
origin (r, z) = (0, 0). An arbitrary function defined in the
local region can be expanded with respect to the small ra-
dial coordinate s or r, where s ∼ r ∼ ε and s = r+O(ε2).
Flux surfaces are approximately given by r = const.

It is shown by using the solenoidal field condition
∇ · B = 0 and Ampère’s law ∇ × B = (4π/c)J that
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the components of the magnetic field in the cylindrical
coordinates are represented by

Br = O(r2),

Bϑ = rB
(1)
ϑ (z) +O(r2)

Bz = B0 +O(r2), (41)

while the components of the current density are written
as Jr = O(r), Jϑ = O(r), and Jz = Jz0 + O(r). Using
Eq. (41) and r ∼ s, we obtain B2 = B2

0 + O(s2). We
see that V (s) is approximated by the volume of the tube
which has the length 2πR0 and the circular cross section
with the radius s. Then, we get

dV/ds = 4π2sR0 +O(s2),√
g = sR0 +O(s2), (42)

where Eq. (40) is used. The definition of s immedi-
ately gives dψ/ds = B0s, and the safety factor is writ-
ten as q(s) = q0 + O(s). Therefore, we have dχ/ds =
(dψ/ds)/q(s) = (B0/q0)s + O(s2). The poloidal and
toroidal contravariant components of the magnetic field
given in Eq. (2) are rewritten as

Bθ = Bθ
0 +O(s),

Bζ = Bζ
0 +O(s), (43)

where Bθ
0 = B0/q0R0 and Bζ

0 = B0/R0 are constants
representing the values at the magnetic axis s = 0.

Since gss(s = 0) = 1 and gζζ(s = 0) = (R0)2, we can
write gss and gζζ near the magnetic axis as

gss = 1 +O(s),

gζζ = (R0)2 + sg
(1)
ζζ (θ) +O(s2). (44)

Noting that |∂x/∂θ| = O(s), we can put gθθ = O(s2)
and gθζ = sg

(1)
θζ + O(s2). Consider the expansion of the

relation Bθ = gθθB
θ + gθζB

ζ with respect to s and recall
that, in the Boozer coordinates, the covariant poloidal
and toroidal magnetic field components Bθ(s) and Bζ(s)
are independent of the angle coordinates θ and ζ. Then,
we get g

(1)
θζ = const and finally obtain g

(1)
θζ = 0 and gθζ =

O(s2) because
∮

gθζdθ =
∮

dθ ∂θx(s, θ, ζ)·∂ζx(s = 0, ζ)+
O(s2) and

∮
dθ ∂θx(s, θ, ζ) = 0 where the θ integral is

taken with s and ζ fixed. Consequently, gθζ = O(s2) is
derived. From Eqs. (42), (44), and the relation

ggss = gθθgζζ − (gθζ)2, (45)

we find that gθθ and gθζ are written as

gθθ = s2 +O(s3),

gθζ = s2g
(2)
θζ +O(s3). (46)

Here, using the relation Bθ = gθθB
θ + gθζB

ζ again, we
see that Bθ(s) = O(s2) and g

(2)
θζ = const in Eq. (46).

It should be noted that the relations θ′ = θ − θ0(s)
and ζ ′ = ζ − ζ0(s) give another set of the Boozer coor-
dinates (s, θ′, ζ ′) from the original (s, θ, ζ) by using arbi-
trary functions θ0(s) and ζ0(s). Under this transforma-
tion, we see that gsθ′ 6= gsθ and gsζ′ 6= gsζ hold generally
although gθ′θ′ = gθθ, gθ′ζ′ = gθζ , and gζ′ζ′ = gζζ . Here,
we generally have gsθ = O(s) and gsζ = O(s0). However,
we can choose θ0(s) and ζ0(s) to satisfy gsθ′ = O(s2)
and gsζ′ = O(s), from which we find that, in the local re-
gion, the new Boozer coordinates (s, θ′, ζ ′) are related to
the local cylinder coordinates (r, ϑ, z) by r = s +O(s2),
θ′ = ϑ +O(s), and ζ ′ = z/R0 +O(s) with the origins of
both coordinates coinciding with each other. Hereafter,
we use this new set of the Boozer coordinates (s, θ′, ζ ′)
although they are represented by (s, θ, ζ) with the prime
omitted. Thus, we now write gsθ and gsζ as

gsθ = s2g
(2)
sθ (θ, ζ) +O(s3),

gsζ = sg
(1)
sζ (θ, ζ) +O(s2) (47)

We find from Eqs. (44), (46), and (47) that

gss = 1 +O(s), (48)

and that the contravariant basis vectors ∂x/∂s, ∂x/∂θ,
and ∂x/∂ζ are orthogonal to each other to the lowest
order in s and they are related to the contravariant basis
vectors ∇s, ∇θ, and ∇ζ by

∂x/∂s = ∇s +O(s),
∂x/∂θ = s2∇θ +O(s2),
∂x/∂ζ = R2

0∇ζ +O(s). (49)

Using Eqs. (41) and (46)–(48), the covariant magnetic
field components are shown to be written as

Bs = s(B0/R0)g
(1)
sζ (θ, ζ) +O(s2),

Bθ = s2(B0/q0R0)(1 + q0g
(2)
θζ ) +O(s3),

Bζ = R0B0 +O(s). (50)

From the relations gsθ = (gsζgθζ − gsθgζζ)/g and gsζ =
(gsθgθζ − gsζgθθ)/g, we obtain

gsθ = −g
(2)
sθ (θ, ζ) +O(s),

gsζ = −sg
(1)
sζ (θ, ζ)/R2

0 +O(s2), (51)

where Eqs. (42), (44), (46), and (47) are used.
Now, Eq. (33) is rewritten by using Eqs. (34), (42),

(44), and (46) as

∂θ(g̃sζ)n = −i(ns)−1(∂2
θg

(1)
ζζ )(g̃sθ)n +O(s) · (g̃sζ)n. (52)

Then, using Eqs. (35), (36), (42), (44), and (46), we ob-
tain

(∂2
θg

(1)
ζζ )∂θ(g̃sθ)n = −(∂3

θg
(1)
ζζ )(g̃sθ)n +O(s2)(g̃sζ)n. (53)
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The relation between (g̃sθ)n and (g̃sζ)n is derived from
Eqs. (34), (36), (38), (39), (42), (44), and (46) as

(
−1 +

4π
∑

a na0ma

B2
0

R2
0(V

ζ
0 )2

)
(g̃sζ)n

= (∂2
θg

(1)
ζζ )(g̃sθ)n/(n2q0s),

(54)

where na0, V ζ
0 , and q0 represent the density, toroidal

angular velocity, and safety factor at the magnetic axis
s = 0, respectively. Eliminating (g̃sζ)n from Eq. (53) by
using Eq. (54) gives

∂θ(g̃sθ)n = −∂3
θg

(1)
ζζ

∂2
θg

(1)
ζζ

(g̃sθ)n, (55)

the solution of which is written as

(g̃sθ)n =
Cn(s)

∂2
θg

(1)
ζζ

, (56)

where Cn(s) is a function of s that still remains to be
determined.

From Eqs. (54) and (56), we have

(g̃sζ)n =
Cn(s)
n2q0s

(
−1 +

4π
∑

a na0ma

B2
0

R2
0(V

ζ
0 )2

)−1

,

(57)
where it is assumed that −1 +
(4π

∑
a na0ma/B2

0)R2
0(V

ζ
0 )2 6= 0 holds generally.

Then, substituting Eqs. (56) and (57) into Eq. (52), we
see that, to the lowest order in s,

Cn(s)∂2
θg

(1)
ζζ = 0 (58)

which is found to reduce to Cn(s) = 0 by noting that the
component of the Riemann curvature tensor in Eq. (29)
is proportional to the Gaussian curvature of the toroidal
flux surface which is not identical to zero. Therefore, we
finally obtain

(g̃sθ)n = (g̃sζ)n = 0. (59)

Now, we see that all components gαβ and accordingly
gαβ (α, β = s, θ, ζ) of the metric tensor are independent
of ζ. For such a case, an arbitrary closed ζ-curve defined
by x = x(s, θ, ζ) (0 ≤ ζ ≤ 2π) with s and θ fixed is a cir-
cle because the curvature and the torsion of the ζ-curve,
which can be derived from gαβ , need to be independent
of ζ and accordingly constants along the closed curve.
Furthermore, two circular closed ζ-curves, x = x(s, θ, ζ)
and x = x(s, θ + dθ, ζ), has a constant interval given by
dθ

√
gθθ − (gθζ)2/gζζ between each other. Thus, toroidal

surfaces, which the ζ-curves lie on, are axisymmetric in
the local region near the magnetic axis and the magnetic
axis itself is a circle of the radius R0 on a flat plane.
Note that ds/

√
gss(= ds/|∇s|) represents the local dis-

tance between neighboring flux surfaces with the radial

coordinates s and s + ds. Since ∂gss/∂ζ = 0 is assumed
to be satisfied globally in the whole volume region, all
flux surfaces, which encircle the magnetic axis of the cir-
cular shape, should be axisymmetric. Now, it is con-
cluded that quasi-axisymmetric rotating plasmas consid-
ered here need to be axisymmetric. The same result is
obtained for general quasisymmetric rotating plasmas in
a similar way to the above one.

Here, it is instructive to rewrite the component Rθζθζ

of the Riemann curvature tensor in Eq. (29) by using
Eqs. (42) and (44) as

Rθζθζ = −s

2
∂2g

(1)
ζζ (θ)
∂θ2

+O(s2), (60)

and the components L, M , and N of the second funda-
mental form are calculated from gαβ (α, β = s, θ, ζ) as

L = −s +O(s2),

M = s

(
1
2

∂g
(1)
sζ

∂θ
− g

(2)
θζ

)
+O(s2),

N = −1
2
g
(1)
ζζ +O(s). (61)

From Eq. (61) and (C11), we have LN −M2 = Rθζθζ =
sg

(1)
ζζ /2 +O(s2) which is combined with Eqs. (60) to ob-

tain ∂2
θg

(1)
ζζ = −g

(1)
ζζ . Thus, we obtain g

(1)
ζζ ∝ Rθζθζ ∝

cos θ, where the origin of the poloidal angle θ is cho-
sen such that the Gaussian curvature (∝ LN − M2) of
toroidal flux surfaces near the magnetic axis vanishes
for θ = ±π/2. This form of g

(1)
ζζ is a well-known re-

sult for large-aspect-ratio axisymmetric toroidal surfaces,
where the Gaussian curvature is positive (negative) for
|θ| < π/2 (|θ| > π/2).

V. CONCLUSIONS

In this work, the conditions for quasisymmetric
toroidal systems to allow large flows on the order of the
ion thermal velocity are investigated. Taking the case of
rotating quasi-axisymmetric plasmas, in which the field
strength B does not depend on the toroidal angle ζ,
the equilibrium momentum balance equations are used
to show that the component gζζ of the metric tensor is
shown to be independent of ζ in the systems with no lo-
cal radial current, where the Boozer coordinates exist. It
is also shown that, unless ∂gζζ/∂ζ = 0, the toroidal flow
velocity cannot take any value other than a very limited
class of eigenvalues corresponding to very rapid rotation
especially for low beta plasmas. In the Boozer coordi-
nates, where ∂gζζ/∂ζ = 0, the metric tensor components
gαβ (α, β = θ, ζ) associated with the angle coordinates for
each flux surface are shown to be independent of ζ. We
finally find that, in order to globally satisfy the equilib-
rium momentum balance, all metric tensor components
gαβ (α, β = s, θ, ζ) need to be independent of ζ, and
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therefore toroidal flux surfaces are axisymmetric. Gen-
eral quasisymmetric cases can be treated similarly. Thus,
quasisymmetric toroidal equilibrium plasmas with large
mean flows should be axisymmetric or they have local ra-
dial currents which do not allow existence of the Boozer
coordinates and impose strong constraints on the toroidal
flow velocity. Since, in the present work, quasisymmetry
is assumed to be rigorously satisfied with the magnetic
field strength B as an analytical function of the flux co-
ordinates, we have not definitely answered yet whether
large mean flows on the order of the ion thermal velocity
can be compatible with nonaxisymmetric toroidal plasma
equilibria such as quasi-omnigenous configurations. This
remains as a future task.
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APPENDIX A: SOLUTIONS OF EQ. (19)

In this Appendix, we investigate solutions of Eq. (19).
As a function of ζ, g̃ζζ is expanded by the Fourier series,

g̃ζζ =
∑

n

(g̃ζζ)ne−inζ , (A1)

where (g̃ζζ)0 = 0. Then, Eq. (19) is represented in terms
of (g̃ζζ)n by

∂

∂θ

(
1√
g

∂[e−inqθ(g̃ζζ)n]
∂θ

)

= −4π
√

g

(∑
a

nama

)(
nV ζ

χ′

)2

e−inqθ(g̃ζζ)n.

(A2)

Introducing new variables ξn ≡ e−inqθ(g̃ζζ)n and ηn,
Eq. (A2) is given in the form of the fist-order ordinary
differential equations,

d

dθ

[
ξn

ηn

]
=

[
0

√
g

−4π
√

g (
∑

a nama) (nV ζ/χ′)2 0

] [
ξn

ηn

]
,

(A3)
where the radial coordinate s is included as a parameter
in ξn, ηn,

√
g, na, V ζ , and χ′ although it is not shown

explicitly. The solution of Eq. (A3) is written as

[
ξn(θ)
ηn(θ)

]
= Θ exp

[∫ θ

0

dθ′ An(θ′)

] [
ξn(0)
ηn(0)

]
(A4)

where

An(θ′) ≡
[

0
√

g(θ′)
−4π

√
g(θ′) (

∑
a mana(θ′)) (nV ζ/χ′)2 0

]
.

(A5)
On the right-hand side of Eq. (A4), Θ represents
the θ-ordered product of matrix functions of θ and
Θ exp

[∫ θ

0
dθ′ An(θ′)

]
is defined by

Θ exp

[∫ θ

0

dθ′ An(θ′)

]

≡ 1 +
∞∑

l=1

∫ θ

0

dθ1

∫ θ1

0

dθ2 · · ·
∫ θl−1

0

dθl

×An(θ1)An(θ2) · · ·An(θl).
(A6)

Generally, An(θ) and An(θ′) are noncommutative,
An(θ)An(θ′) 6= An(θ′)An(θ), for θ 6= θ′. If An(θ) and
An(θ′) are commutative for arbitrary values of θ and θ′,
Eq. (A6) reduces to the well-known exponential form,

Θ exp

[∫ θ

0

dθ′ An(θ′)

]
=

∞∑

l=0

1
l!

(∫ θ

0

dθ′An(θ′)

)l

≡ exp

[∫ θ

0

dθ′ An(θ′)

]
. (A7)

Since (g̃ζζ)n and d(g̃ζζ)n/dθ are periodic functions of
θ with the period 2π, einqθξn and einqθηn are periodic,
too. These periodic conditions give

e2πinqΘexp

[∫ θ

0

dθ′ An(θ′)

] [
ξn(0)
ηn(0)

]
=

[
ξn(0)
ηn(0)

]
.

(A8)
Then, the condition for [ξn(0), ηn(0)] 6= [0, 0] to satisfy
Eq. (A8) is written as

det

(
e2πinqΘ exp

[∫ θ

0

dθ′ An(θ′)

]
− I

)
= 0, (A9)

where I denotes the 2×2 unit matrix. Thus, for a given n
and a given radial coordinate s, V ζ included in the matrix
An(θ) needs to take one of eigenvalues determined by the
condition shown in Eq. (A9).

In the neighborhood of the magnetic axis s = 0 as
discussed in Sec. IV, An(θ) is approximated as,

An(θ) ' An0 ≡
[

0 sR0

−n2λ2/sR0 0

]

= −nλ

[
1 0
0 nλ/sR0

] [
0 −1
1 0

] [
1 0
0 sR0/nλ

]
,

(A10)

where the radial coordinate s is defined by ψ ≡ 1
2B0s

2 in
the same way as in Sec. IV. Here, λ is a constant defined
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by

λ ≡ (4π
∑

a

na0ma)1/2q0R0V
ζ
0 /B0, (A11)

where na0, q0, and V ζ
0 are the density, the safety factor,

and the toroidal angular velocity on the magnetic axis
s = 0, respectively. From Eqs. (A9) and (A10), we obtain

det
(
e2πinq0 exp(2πAn0)− I

)

= det
[

e2πinq0 cos(2πnλ)− 1 e2πinq0 sin(2πnλ)
−e2πinq0 sin(2πnλ) e2πinq0 cos(2πnλ)− 1

]

= (e2πin(q0+λ) − 1)(e2πin(q0−λ) − 1) = 0. (A12)

Equations (A11) and (A12) yield

λ± q0 = q0(
√

β0R0V
ζ
0 /vT0 ± 1)

=
l

n
(l = 0,±1,±2, · · · ), (A13)

where β0 ≡ 8π(
∑

a na0Ta0)/B2
0 is the central beta and

vT0 ≡ [2(
∑

a na0Ta0)/(
∑

a na0ma)]1/2 represents a char-
acteristic value of the central temperature. Eigenvalues
which V ζ

0 should take are given by Eq. (A13), from which
we obtain

R0V
ζ
0 /vT0 = (±1 + l/nq0)/

√
β0 (l = 0,±1,±2, · · · ).

(A14)
For the regions other than the neighborhood of the mag-
netic axis, eigenvalues of V ζ need to be determined by
Eq. (A9). Equation (A14) shows that, unless gζζ is inde-
pendent of ζ, the toroidal flow velocity of O(vT0) cannot
take any value other than a very limited class of eigenval-
ues corresponding to very rapid rotation (which could be
supersonic) especially for low beta plasmas. Therefore,
the case of ∂gζζ/∂ζ = 0 is considered in the main text of
the present paper.

APPENDIX B: TRANSFORMATION OF FLUX
COORDINATES

In terms of arbitrary flux coordinates (s, θ, ζ), the mag-
netic field, which forms nested toroidal surfaces, is rep-
resented by

B = ψ′(s)∇s×∇θ + χ′(s)∇ζ ×∇s, (B1)

where θ and ζ are the poloidal and toroidal angles, re-
spectively, and s is a radial coordinate or a label to spec-
ify a flux surface. As explained after Eq. (1), the toroidal
and poloidal fluxes within the volume inside the surface
with the label s are given by 2πψ(s) and 2πχ(s), respec-
tively, and ′ ≡ ∂/∂s denotes the derivative with respect
to s.

Consider two sets of flux coordinates (s, θ, ζ) and
(s, θA, ζA), where the same radial coordinate s is used.

Then, there exists a generating function GA(s, θ, ζ) by
which the coordinate transformation is written as [35]

θA = θ + χ′(s)GA(s, θ, ζ),
ζA = ζ + ψ′(s)GA(s, θ, ζ). (B2)

We find from Eqs. (B1) and (B2) that the generating
function GA satisfies the magnetic differential equation,

B · ∇GA =
1√
gA

− 1√
g

(B3)

where
√

g ≡ [∇s · (∇θ×∇ζ)]−1 and
√

gA ≡ [∇s · (∇θA×
∇ζA)]−1 are the Jacobians associated with the flux co-
ordinates (s, θ, ζ) and (s, θA, ζA), respectively. Using
Eqs. (B1) and (B2), we also obtain

∂x
∂θ

=
∂x
∂θA

+
∂G

∂θ

√
gAB,

∂x
∂ζ

=
∂x
∂ζA

+
∂G

∂ζ

√
gAB. (B4)

When the local radial current vanishes, we have

4π

c
Js =

√
g

(
∂Bζ

∂θ
− ∂Bθ

∂ζ

)
= 0, (B5)

where Bθ and Bζ are the covariant poloidal and toroidal
magnetic field components, respectively. If the conven-
tional equilibrium condition J×B/c = ∇p(s) is assumed,
Js = 0 is immediately derived. However, it is emphasized
that, in the present paper, we consider the equilibrium
force balance given by Eq. (17) where the inertia term
associated with the large flow velocity V0 is included.
Therefore, Js = 0 is not trivial here but it imposes addi-
tional constraints on the magnetic geometry as discussed
in Sec. II. It is shown from Eq. (B5) that Bθ and Bζ are
written in terms of a certain function η(s, θ, ζ) as

Bθ =
2
c
It(s) +

∂η(s, θ, ζ)
∂θ

,

Bζ =
2
c
Id
p (s) +

∂η(s, θ, ζ)
∂ζ

, (B6)

where It(s) ≡ (c/4π)
∮

Bθdθ [Id
p (s) ≡ (c/4π)

∮
Bζdζ] rep-

resents the toroidal (poloidal) current flowing inside (out-
side) the flux surface with the label s, and η is periodic
in θ and ζ. Then, the magnetic field is written as

B = Bs∇s + Bθ∇θ + Bζ∇ζ

=
(

Bs − ∂η

∂s

)
∇s +

2
c
It(s)∇θ +

2
c
Id
p (s)∇ζ +∇η.

(B7)

Now, the Boozer coordinates (s, θB , ζB) are obtained
from the coordinate transformation in Eq. (B2) with the
generating function GA replaced by

GB(s, θ, ζ) ≡ cη

2(ψ′Id
p + χ′It)

. (B8)
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The Boozer coordinates (s, θB , ζB) are characterized by
the properties that the covariant poloidal and toroidal
components of the magnetic field are independent of θB

and ζB . In fact, using Eqs. (B2), (B7), and (B8), we see

BθB
=

2
c
It(s), BζB

=
2
c
Id
p (s). (B9)

Thus, we have proved that there exist the Boozer coor-
dinates (s, θB , ζB) for the case of Js = 0 even though the
conventional equilibrium condition J × B/c = ∇p(s) is
not assumed.

Using BθB = χ′/
√

gB , BζB = ψ′/
√

gB , and Eq. (B9),
shows

B2 = BθBBθB
+ BζBBζB

=
2(χ′It + ψ′Id

p )
c
√

gB
, (B10)

from which we obtain 〈B2〉 ≡ ∮
dθB

∮
dζB

√
gBB2/V ′ =

8π2(χ′It + ψ′Id
p )/(cV ′) and

√
gB =

V ′(s)
4π2

〈B2〉
B2

. (B11)

Here, V ′(s) =
∮

dθB

∮
dζB

√
gB , is the radial derivative of

the volume V (s) within the flux surface labeled s. Thus,
in the Boozer coordinates, the Jacobian

√
gB depends on

the angle coordinates (θB , ζB) only through 1/B2.
In the quasisymmetric toroidal plasma with large mean

flows, the flow velocity V0 is parallel to the direction
of quasisymmetry of the magnetic field strength B and
the Jacobian

√
g of the flux coordinates (s, θ, ζ) does not

vary in the symmetry direction as explained in Sec. II.
Let us take the case of quasi-axisymmetry for simplicity
although we can treat general quasisymmetric cases in
the same way as shown below. Then, ∂B/∂ζ = 0 and
∂
√

g/∂ζ = 0, where we should note that (s, θ, ζ) does
not need to be the Boozer coordinates but they should
be at least flux coordinates satisfying Eq. (B1). Now,
in addition to the above quasisymmetry conditions, we
consider again the case of Js = 0 in which there exist the
Boozer coordinates (s, θB , ζB) satisfying Eqs. (B9) and
(B11) as we have shown.

Since ∂B/∂ζ = 0 and ∂
√

g/∂ζ = 0, the generating
function GB yielding the coordinate transformation from
(s, θ, ζ) to (s, θB , ζB) can be obtained by directly inte-
grating the magnetic differential equation in the form of
Eq. (B3) as

GB =
1

χ′(s)

∫ θ

0

dθ′
(

4π2

V ′(s)
{B(s, θ′)}2
〈B2〉

√
g(s, θ′)− 1

)

+ K(s), (B12)

where K(s) is independent of (θ, ζ) and appears as a
constant of integration. Using Eq. (B4) and noting that
GB is independent of ζ, we find

∂x
∂ζB

=
∂x
∂ζ

,
∂B

∂ζB
=

∂B

∂ζ
= 0, (B13)

from which ∂
√

gB/∂ζB = 0 is immediately derived.
Equation (B13) implies that, if a rapid rotating toroidal
plasma with no local radial current is quasisymmetric in
terms of a certain set of flux coordinates (s, θ, ζ), then it
is so in the Boozer coordinates (s, θB , ζB), too. Thus, as
remarked after Eq. (21) in Sec. II, we can use the Boozer
coordinates from the beginning to investigate quasisym-
metric toroidal systems with large mean flows if Js = 0
is satisfied.

In passing, for the present case of ∂
√

g/∂ζ = 0, the co-
ordinate transformation in Eq. (B2) using another gen-
eration function defined by

GA =
1

χ′(s)

∫ θ

0

dθ′
(

4π2

V ′(s)

√
g(s, θ′)− 1

)
, (B14)

yields the new flux coordinates (s, θA, θB) for which the
Jacobian is given by

√
gA =

V ′(s)
4π2

. (B15)

Equation (B15) shows that the Jacobian
√

gA is a flux-
surface function, which is a characteristic of the Hamada
coordinates [34]. Under the conventional equilibrium
condition J × B/c = ∇p(s), we find that JθA and JζA

are flux-surface functions, where JθA and JζA represent
the contravariant poloidal and toroidal components of the
current density vector J, respectively. However, it should
be noted that, since the large-flow inertia term is included
in the equilibrium force balance here, this property of the
Hamada coordinates is not generally satisfied in the flux
coordinates (s, θA, ζA), where JθA and JζA may not be
functions of s alone while

√
gA = V ′(s)/(4π2).

APPENDIX C: DIFFERENTIAL GEOMETRY OF
SURFACES

In this Appendix, we briefly review the definitions of
basic quantities used in the differential geometry for sur-
faces [32]. Here, in order to easily derive these quanti-
ties in Sec. III for the case of quasisymmetric toroidal
surfaces, we represent an arbitrary surface locally by
x = x(θ, ζ) with θ and ζ used as two parameters even
though they do not need to be angle coordinates in this
Appendix.

The first fundamental form is the metric tensor for the
surface x = x(θ, ζ), the components of which are defined
by

E ≡ gθθ ≡ |∂θx|2,
F ≡ gθζ ≡ (∂θx) · (∂ζx),

G ≡ gζζ ≡ |∂ζx|2, (C1)

where simplified notations ∂θ = ∂/∂θ and ∂ζ = ∂/∂ζ
are used. Then, the Christoffel symbols Γγαβ and Γγ

αβ

(α, β, γ = θ, ζ) are defined by using the components of
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the first fundamental form in Eq. (C1) as

Γγαβ ≡
∑

δ=θ,ζ

gγδΓδ
αβ ≡

1
2
(∂αgβγ +∂βgγα−∂γgαβ). (C2)

We take the inverse of the 2 × 2 matrix consisting of
gαβ (α, β = θ, ζ) when deriving Γγ

αβ from Γγαβ . This
inverse matrix should not be identified with gαβ used in
Secs. III–IV because the latter is obtained by taking the
inverse of the 3×3 matrix which includes additional com-
ponents gss, gsθ, and gsζ . Using the Christoffel symbols,
the components Rγ

δαβ and Rγδαβ (δ, γ, α, β = θ, ζ) of the
Riemann curvature tensor are defined by

Rγ
δαβ = ∂αΓγ

βδ − ∂βΓγ
αδ + Γγ

ασΓσ
βδ − Γγ

βσΓσ
αδ,

Rγδαβ =
∑

σ=θ,ζ

gγσRσ
δαβ . (C3)

The components of the Riemann curvature tensor have
the symmetry properties written as

Rαβγδ = Rγδαβ = −Rβαγδ = −Rαβδγ , (C4)
Rαβγδ + Rαγδβ + Rαδβγ = 0. (C5)

Then, it is found that nonzero covariant components of
the Riemann tensor for the surface x = x(θ, ζ) are only
Rθζθζ and those obtained from Rθζθζ by using the sym-
metric properties in Eq. (C4).

The unit normal vector e to the surface is written as

e ≡ ∇s

|∇s| ≡
∂x/∂θ × ∂x/∂ζ

|∂x/∂θ × ∂x/∂ζ| . (C6)

Then, the components L, M , and N of the second fun-
damental form for the surface are defined by using the
normal vector e as

L ≡ hθθ ≡ ∂2x
∂θ2

· e,

M ≡ hθζ ≡ ∂2x
∂θ∂ζ

· e,

N ≡ hζζ ≡ ∂2x
∂ζ2

· e. (C7)

In terms of the components of the first and second fun-
damental forms in Eqs. (C1) and (C7), the Gaussian cur-
vature of the surface is given by

K =
LN −M2

EG− F 2
. (C8)

The components (E,F, G) and (L,M, N) of the first
and second fundamental forms must satisfy the Codazzi-
Mainardi equations which are written as

∂ζL− ∂θM = LΓθ
θζ + M(Γζ

θζ − Γθ
θθ)−NΓζ

θθ,

∂ζM − ∂θN = LΓθ
ζζ + M(Γζ

ζζ − Γθ
θζ)−NΓζ

θζ ,(C9)

where we should recall that the Christoffel symbols Γγ
αβ

contain the components of the first fundamental form
as shown in Eq. (C2). Furthermore, (E, F,G) and
(L,M,N) must satisfy the Gauss equation given by

K =
Rθζθζ

EG− F 2
, (C10)

which is rewritten by using Eq. (C8) as

LN −M2 = Rθζθζ . (C11)

Here, note that Rθζθζ is calculated from the components
of the first fundamental form or the metric tensor by us-
ing Eq. (C2) and (C3). The Gauss equation in Eq. (C10)
[or (C11)] is the basis for Gauss’s theorema egregium
which states that the Gaussian curvature of a surface
can be determined by residents confined onto the surface
who measure the dependence of the metric tensor (gαβ)
on the parameters (θ, ζ) without even knowing about the
three-dimensional space in which the surface is embed-
ded. Bonnet’s fundamental theorem of surface theory
states that, if given functions (E, F,G) and (L,M,N)
satisfy E > 0, EG − F 2 > 0, and the Gauss-Codazzi-
Mainardi equations in Eqs. (C9) and (C10) [or (C11)],
then there exists a surface for which the components
of the first and second fundamental forms are given by
(E, F, G) and (L, M, N), respectively, and that such a
surface is determined uniquely up to congruence.
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