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Abstract.

We investigate how the radial thermalffdisivity of an axisymmetric toroidal plasma is
modified by éfect of resonant magnetic perturbations (RMPSs), using a drift kinetic simulation
code for calculating the thermalftlisivity in the perturbed region. The perturbed region is
assumed to be generated on and around the resonance surfaces, and is wedged in between
the regular closed magnetic surfaces. It has been found that the radial theffonsilidy

in the perturbed region is representedyas= v\2{1 + c(|I6B[2)}. Here(||sB[2)Y2 is the
strength of the RMPs in the radial directiofsy means the flux surface average defined by
the unperturbed (i.e., original) magnetic fie,k{l?) is the neoclassical thermalffiisivity, and

c is a positive cofficient. In this paper, dependence of thefiocgentc on parameters of the
toroidal plasma is studied in results given by #tfesimulation code solving the drift kinetic
equation under an assumption of zero electric field. We find that the dependemisegdfen

asc « wp/ver Min the low collisionality regimeres < wp, Whereve is the dfective collision
frequencywy, is the bounce frequency amdis the particle mass. In case af > wp, the
thermal difusivity y; evaluated by the simulations becomes close to the neoclassical thermal
diffusivity y\©.

PACS numbers: 52.25.Fi, 52.65.Pp
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1. Introduction

To understand fundamental properties of plasma transport in a perturbed magnetic field is
important for control of a fusion plasma by application of resonant magnetic perturbations
(RMPs). In this paper, we investigate how the radial heat transport phenomenon in an
axisymmetric toroidal plasma is modified bffext of RMPs. Presuppositions in the study are

as simplified as possible for the sake of visible prospect. 1) The plasma particles are assumed
to be confined in a tokamak field disturbed partly by the RMPs. The perturbed region is
generated on and around the resonance surfaces, and is wedged in between the regular closed
magnetic surfaces. In the perturbed region, there is no magnetic field line connected to the
divertor. Here the perturbed magnetic field is assumed to be fixed and time evolution of the
RMP field is neglected. The ratio of the gyroradius the width of the perturbed regidtkwpe

is assumed to satisfy/Arvwp < 1, and thus the scales pfandAgyp are well separated from

each other. 2) The Coulomb collision is assumed to be represented as the collisions between
plasma particles of the same species, where the plasma particles are monoenergetic. Then,
the species of the plasma patrticles is assumed to be ion. 3) Electric field, MHD activities,
neutrals, and impurities are neglected. Under the above presuppositions, in this fiaper, e

of the RMPs on the radial heat transport phenomenon is investigated, and a model formula of
the radial thermal diiusivity is derived from the investigation.

Diffusion of plasma particles in coordinate space results from Coulomb collisions, which
cause small deflections of the velocity vector of a plasma particle [1]. Here the plasma
particles are assumed to be included in an axisymmetric toroidal plasma having nested flux
surfaces. After a collision time, i.e., after a plasma particle is exposgitisntly to the
Coulomb collision, a sample path of the guiding center in the coordinate sYéges given
by a difusion process: X(t) = vdt — V(X(t)) dt + o(X(t)) - dW(t), as shown in [2]. Here is
the velocity of the guiding centeY,(x) is the mean velocity at a positionin the coordinate
spaceW(t) is a Brownian motion, antddenotes time. The coordinate system is set to describe
reference surfaces which consist of the nested flux surfaces. ffasioln codficientD'/(x) is
represented B’/ = ol <o) by o = ((x)) in the equation of the random motion, where the
indexesi, j, k, £ indicate a component of a tensor (i.e.j, k, ¢ = 1,2, 3). Diffusive transport
phenomena in an axisymmetric toroidal plasma having nested flux surfaces are treated in the
neoclassical theory [1]. We can estimate the neoclassical transpéitiswgs by calculating
energy integral oD'l [3, 4].

When the magnetic field, in which the plasma particles are confined, is disturbed partly
by RMPs, the neoclassical theory is no longer applicable to the transport phenomena because
the nested flux surfaces are destroyed (or ergodized) in the perturbed region. On the other
hand, itis known that the theory of field-linefflision (hereafter, the FLD theory) [5, 6], which
is the standard theory offtlisive transport phenomena in a chaotic structure of magnetic field
lines in the collisionless limit, is not useful for explaining the heat transport phenomenon in
the perturbed region after a collision time [7, 8], where the perturbed region is supposed
to be bounded radially on both sides by the regular closed magnetic surfaces. How is the
neoclassical transport modified? What is a parameter of the toroidal plasma explaining the
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transport properties? Answering the questions is the subject of this paper. For the purpose,
based on results of drift kinetic simulations includinfijeets of Coulomb collisions and
RMPs, the modeling of the radial heat transport is considered. Before execution of the
simulations, in order to avoid a haphazard way to approach the subject, we narrow candidates
for the key parameters explaining properties of the heat transport phenomenon.

This paper is organized as follows. The candidates for the key parameters are discussed
in section 2. In section 3, dependence of the radial thernfBlgility on the candidates
given in section 2 is studied in results of drift-kinetic simulations, and a model formula of the
thermal difusivity is derived. Finally, in section 4, summary and discussions are given.

2. Key parameters explaining radial heat transport

Hereatfter, the original flux surfaces (i.e., the nested flux surfaces) of the unperturbed magnetic
field are used as the reference surfaces in the perturbed magnetic fikddt d& the RMPs
on guiding center motion is interpreted as noise on the motion in statistical sense. The noise
causes small and random changes of the displacement vector of a guiding center because the
magnetic field lines are disarranged by the RMPs. If tifiect of the RMPs is represented as
N(s) - vds by a random functiomN(s) = (N}(s)), then the guiding center motion is given by a
stochastic process; «(s) in the coordinate space [8]:
dXix(9) = {1+N(9)}-vds
— {V(Xix(9) + V}ds+ {1+ N(9)} - o(Xix(9)) - dW(S) assy — o0, (1)
wheresdenotes tlmes{> t), Xix(9) is a sample patX(s) satisfyingX(t) = x, vis the collision
frequency, and/ = N - V is the perturbed mean velocity. Because, in general, magnetic field
including RMPs satisfies Maxwell’s equations, the RMP field is a smooth functioauod
X. Then, it is natural that the noise originating from the RMIRP}s(s), is continuous in times,
and thaﬂﬁ}(s)| is bounded. From equation (1), the contributions of the guiding centers to the
collective motion at a positior are given as follows [8]:
. 1 . _
i _ = i _ A |otre
V' = lim ZE[E[X,(t+¢) - X 28]

~Vi(x) + lim E [\7‘2,?5]]

e—0+

= Vi) +VI() lim E[E[N}‘Z{“”, )
Dl = lim %E[E[{X{,X(t +6) = XX (t + €) - X} z{*”
= lim %E[E {0l + NiJork (Wh(t + €) - Wi (b))
x {51+ NJor (Wt + €) - WD) z;+e”
- 0¥ lim [l fo + !+ W)t | &)




Radial thermal dffusivity of toroidal plasmagected by resonant magnetic perturbationg
and

lim }E[E[{X{X(t +€) = X {Xi(t+ ) - X}

e—0+ €
X oo X {thx(t +6€) - Xk} Z%“H
=0, (4)

where E is the expectation operator given by the stochastic process (1), the indexes
I, ),k Ky, €,¢1 in equations (2)-(4) indicate a component of a vetémsor (i.e.,

i, .k ke, &, ¢ = 1,2,3),V is the mean velocityfected by the noise, aridl! is the codicient

of the difusion matrix &ected. Here lim,o, (1/€)E[E[{WX(t + €) — WKE)HWI(t + €) —

WE D ZH]] = 6%, Equation (4) is the contribution of thé&th order moment of the
displacement, wheré, > 3, and is related to thé&th order derivatives of fluid quantities.

The o-algebraZi* is generated by the set of the sample pdths(s);t < s <t + ¢} and

E[ - 1Z{*¢] denotes the conditional expectation with respectid [9, 10], wheree is a real
number satisfyinge > 0. Note that lim_q, E[-1Z{*] is a function ofx [9, 10], and thus

V' and D'l are functions ofx. We should give attention to the fact that the perturbed mean
velocity\7 cannot &ect the difusion codicient in equation (3), i.e., the contribution of

to the dffusion codicient is estimated to b8(¢) — 0 ase — 0+ [11]. From equations

(2) - (4), we see that the collective motion of the stochastic precess (1) is interpreted as
a diffusion phenomenon because of the properties of Brownian m@#@h If the noise

N is zero-mean, i.e., lim,o, E[E[NI‘JZ{“]] = 0, thenV(x) = V(x) in equation (2) and

D'l (x) = D(x) {816} + lim . E[E[N{N}|Z{*]]} in equation (3).

The Coulomb collision between particles of the same species is supposed in this paper,
then considering the radial thermalffdisivity affected by the RMPs is reasonable for an
understanding of fundamental properties of radial transport phenomena in the perturbed
region. For the sake of simplicity, we assume that 1) the nilise (N}) is zero-mean and

symmetric (accordingly diagonalizable),@): V = 0, and 3) a reference surface is labeled
by a minor radiug of the unperturbed magnetic field configuration. From these assumptions
and equation (3), the radialftlision codicient of the monoenergetic particles is expected
to beD* = D*{1 + N2}, whereN is the strength of the noise in the radial directions &nd

is interpreted as the radialftlision codficient of the monoenergetic particles in the case of
N = 0. Itis natural that the strength of the noise is proportional to the strength of the RMPs
in the radial directions. After energy integral Bf [3, 4], the radial thermal diusivity atr is
represented as

X() = x() {1+ cloB %)}, 5)
wherey(r) is the radial thermal diusivity without the RMPs and is a positive cofficient.
Here(||6B||?)Y/? is the strength of the RMPs atn the radial directions and is defined clearly
later. From equations (1) - (5), we see that tife@ of the RMPs on the radial heat transport
phenomenon comes down to the modification on only the radial therfiasigity under the
presuppositions in this paper. The radial heat transport phenomenon in the perturbed region
is one of the difusion phenomena caused by the Coulomb collision.
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Equation (5) is confirmed in the previous simulation study of ion heat transport in a
perturbed tokamak field in the banana regime [8], but the fact remains that tiieieoéc is
undefined. Considering an interpretation of equation (5), we speculate on the key parameters
explaining the coficientc as follows.

(G1) The codicientc is expected to be related with,/ve; that is one of the candidates
characterizing the time scale of the transport, wheye- /e w; is the bounce frequency in
the unperturbed (i.e., original) magnetic field; ~ v/¢ is the dfective collision frequency,
andw; = vr/gRis the transit frequency. Herg is the thermal velocity; is the inverse aspect
ratio, q is the safety factor, anR is the major radius. It is known that the guiding center
motion describing banana orbits is the characteristic motion most contributing to the collective
motion in collisionless tokamaks, and that the trapped orbits are typically interrupted by the
Coulomb collision in the high collisionality regimeg/wy, > 1 [1]. The strength of the
RMPs is stficiently small compared with the strength of the unperturbed magnetic field, e.g.,
(I6B/117yY2/|By| < 1072, where|By| is the strength of the unperturbed magnetic field on the
magnetic axis. Accordingly, thefect of the RMPs, which is the modification on the thermal
diffusivity characterized by banana motion in the collisionless higitw, < 1 (see equation
(5)), is expected to be wiped out by the Coulomb collision in the high collisionality regime.
Thus the cofficientc in the perturbed tokamak field should be a functiomgfve; satisfying
c —» 0 aswp/ver — 0, Wherew, characterizes the time scale of banana motion. Note the
following: there is a possibility thab;/v instead otwy/ver iS the parameter characterizing the
time scale of the transport. It is checked up by means of drift kinetic simulations in section 3.

(G2) The coficient c is also expected to be related with the particle massilt is
obvious that a plasma particle becomes sensitive to the field line structure as the particle mass
m decreases, because the cross-field drift velocity becomes close to @ere B [1]. Thus,
as the particle mass decreases, the strength of the néésetiray on the banana motion is
expected to be enhanced. Note thglver (andw;/v) is independent of the particle mass
because ofv, « 1/+mandve o« 1/ y/m. Consequently, the cfiicient c should be also a
function of I/m satisfyingc — oo asm — 0. What is a parameter including the particle mass
in this case? From analogy with the conjecture (G1), one of the candidates characterizing the
space scale of the transport is the normalized width of a banana\grgg/gR (or A,/gR).

(G3) Combining the conjectures mentioned above, the model formula of the radial
thermal difusivity is hypothesized to be

_ A qrR wp ) (6B 1%

70~ ) {1 or () o 2] 0 ©)
if the pair of wp/ver and A, v/&/QR is considered, wher€;(y) and F,(y) are functions of
y and € is a positive cofficient. Here(||0B;||?) is normalized by|By|?. If equation (6) is
the connection formula between the thermdfutiivities given by the neoclassical theory
[1] and the FLD theory [5, 6] in the collisionless limit, then it is expected by means of
dimensional analysis thd; (qR/ /& Ap) = (AR/ V& Ab)?, Fa(wp/Ver) = wp/ver, and€ = .
The neoclassical thermalfilisivity in the collisionless limit iyN¢ ~ \/EtAgveff and the
thermal difusivity predicted by the FLD theory j§-P = nqRu1(||6B;[1%)/|Brol?.
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The following section is devoted to investigate dependence of théiceat c in
equation (5) on parameters of the toroidal plasma by meang bisanulation code KEATS
[8, 12]. The conjectures (G1) - (G3) are also examined in results aof ttemulations. The
simulations are independent of the derivation described by equations (1) - (6) because the
radial thermal dtusivity in the simulations is evaluated from the radial heat flux given by a
distribution function of guiding centers, not from the displacements of guiding centers, where
the distribution function is a solution of the drift kinetic equation. Thus the simulations are
suitable to verify equation (6).

3. Model formula of thermal diffusivity derived from simulation results
3.1. Method of estimating, and simulation conditions

In this section, using the drift kinetic simulation code for calculating the radial thermal
diffusivity of ion (proton) in a tokamak plasméected by RMPs, we investigate dependence

of the codficient c in equation (5) on parameters of the toroidal plasma. The simulation
conditions are as simplified as possible for the sake of visible prospect. In the simulations,
we neglect MHD activities, neutrals, and impurities. In generfikct of an electric field

E is important for an understanding of radial transport phenomena in the toroidal plasma.
However, in this paper, to focus on the fundamental properties of the radial heat transport
affected by the RMPs, thetect of E is also neglected.

The radial heat flux given by a guiding center distribution function is evaluated by the
o f simulation code KEATS that is a Monte Carlo simulation code based on the drift kinetic
equation [8, 12]. The guiding center distribution functibn= f(t,x,v) = fy + 6 f evolves
with time from the Maxwell distributionfy, under défects of the Coulomb collision and the
RMPs, wheresf = 0 att = 0. The Coulomb collision in the simulations is given, for the
sake of simplicity, by the pitch-angle scattering operator for the collisions with the Maxwell
backgroundfy,, where the operator satisfies the local momentum conservation property and
the quadratic collision terr@(6f,5f) is neglected. The Maxwell distributiofy, is assumed
to be given as a function ofandv, i.e., fy = fu(r,v), wherer is the label of the original
flux surfacesp = |v| is the speed of a particle, and the zero mean velocity is assumed (i.e.,
Vi = Ve =V = 0). The subscript “i” or “e” means a particle species; in the notatioX of
whereX, is a physical quantity of the speciea*, the subscriptx = i means ion and = e
means electron. Hereafter, the radial therm&udivities in the toroidal magnetic field with
and without RMPs are notated lpy andy?, respectively.

The toroidal magnetic configuration used in the simulations is formed by the addition
of an RMP field to a simple tokamak field having concentric circular flux surfaces. The
perturbed region is bounded radially on both sides by the regular closed magnetic surfaces,
for example, as shown in figure 1. The major radius of the magnetic axis iSRgt+03.6 m,
the minor radius of the toroidal plasmaas= 1 m, and the strength of the magnetic field on
the magnetic axis iB,x = |Bi| = 4 T. Note that in subsection 3.3 we change the valu8gif
for investigating the dependence ®bn the banana width. The temperature profile is fixed
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asT = Te = T(r) = Tax — (Tax — Tedgd(r/a) with To = 1.137 keV andTegge = 0.8T4y, and

the densityn, = ne = nis assumed to be a constant, where \/(R— Rax)? + Z2 is the label

of the reference surfaces in the cylindrical coordinaiRs(Z). The original flux surfaces

of the circular tokamak field are used as the reference surfaces in the coordinate space. The
unperturbed magnetic fiell, = BorR + Bo,@ + BozZ is given byBor = —BaZ/dR Bg, =
—BaxRax/R, andBgz = Bay(R — Rey)/qR[13], whereR, ¢ andZ are the unit vectors in thi, ¢

andZ directions, respectively, artfis the safety factor given by * = 0.9-0.5875¢/a)?. The
RMPs causing resonance with rational surfacesefk/¢ = 3/2,10/7,11/7, ... are given by

a perturbation fieldB = V x (aBy). Here the functiorr is used to represent the structure of
the perturbed magnetic field(R, ¢, Z) = X, awe = 2k ae(r(R Z2)) codkd(R, Z) — o + ¢},
wherea,, = Cexp—(r — r)?/Ar?} having constantgc,}, r = ry is the rational surface

of g = k/¢, Ar is a small parameter controlling the width of the perturbation, @pds a
phase. The square of the strength of the RMPs in the radial directigi]|?), is given

by the averaged value ¢6B.||> = 3, 16B%“|? on a reference surface labeled hywhere
sB¥) = Vr - V x (aBo). The total magnetic field i® = By + 6B, where the condition

|Bol > |6B| is assumed. The ratio of the ion gyroradiys$o the width of the perturbed region
Arwmp IS Set topi/Arvp < 1/200 in the simulations in this paper, and thus the drift kinetic
equation solver KEATS is applicable to the simulation analysis of the radial heat transport
phenomenon, whetrye ~ [01n (|68, |1?)Y2/or| .

The Poincaé plot of the magnetic field lines on a poloidal cross section in the case
of (cw/a, Ar/a, ) = (6 x 103,5 x 1072,0) is shown in figure 1, and the strength of the
RMPs in the radial directions is set {fB;||?)'/2/|By| ~ 1/100 at the center of the ergodic
region, where the perturbed regiofiected by the RMPs is ergodized in this case. Hereafter
6B is defined by the value of|6B|[%Y2 in the case of figure 1. Specific details of the
perturbed magnetic field and the particle motion itself are shown in the previous studies
[7, 14]. Comparisons between the results of #fesimulation and the FLD theory are
discussed in detail in [8].

Under the conditions af = constantV = 0 andE = 0, the radial thermal diusivity of
ion is estimated by

Qir(r)
- <rtJ 7
X = T (naT(n)/ar O
where Q;((r) is the radial energy flux of ion evaluated by thé simulation code and is
interpreted as the radial heat flux under the above conditions. In the simulations, the radial

energy flux is evaluated on a reference surface labeled dyd is given by

Qir(r) = <Vr : fd3v m§205f>. (8)

Here= means the time-average and the averaging time is longer than the typical time scale
of 6f (both the orbit and collision times). The time-averaging is carried out aftcisunt
exposure to the collisions. The average is defined ag-) = (1/6V) fw- d®x, wheresV is

a small volume and lies between two neighboring reference surfaces with vold(ngand

V(r) + 6YV.
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We recall the main result in the previous study on the ion heat transport [8]; the radial
thermal dffusivity y, depends or{||6B;|[?), not on the number of modes of RMPs, nor on
details of the magnetic field-line structure. From the simulation results shown in figure 2,
we see that the radial thermalfidisivity is represented ag = Xﬁo){l + c{||6B||?)}, which
is the same form as equation (5), and that this tendency does not change if the collision
frequencyv is changed, where the collision frequencis proportional to the density and
satisfiesv/gwp = ver/wp < 1071 in figure 2. The radial thermal fiusivity for the limit
of (JI6B,|>)¥2 = 0 agrees with that given by the neoclassical theory in the banana regime
Vet/wp < 1, 1.€.,x; = )(50) ~ )(iNrC = 1.35€t1/2Ti/(in297”) ~ \/Etpizevii [1], Where)(i'\‘rc is the
neoclassical thermal dusivity of ion, Q;, is the ion poloidal gyrofrequency; = v; ! is the
ion-ion collision time, ang;, is the ion poloidal gyroradius.

3.2. Dependence gf on collision frequency

As shown in figure 2, the thermalftlisivity y, also depends on the collision frequency
The dependence gf on the collision frequency in each (:ase(klﬁBr||2>/|<5B§°)|2 =0and 1

is shown in figure 3. The thermalflisivity in the case of|6B,|12)/|6B2 = 0 is explained
by the neoclassical theory [8]. In figure 3, we see that tikedince between the thermal
diffusivities with and without the RMPs is negligibly small in the plateau regifegu, =
ver/wp > 1, and that one of the key parameters explaining théictentc is wp/v = wp/ Ve,
rather thanu/v. Note that the thermal ffusivities in the plateau regime in both the cases of
(I6B:12/16B?2 = 0 and 1 are close to the neoclassical thermélsivity in the plateau
regime, where the neoclassical thermafudiivity is given asN° = wy; p? (3 Y?/4) ~ 0.3
m?/s in the plateau regime [1]. Itis inferred from the result§efy ¥} -1 that the dependence
of ¢ on the collision frequency is ¢ « 1/v, as shown in figure 4. Then, the radial thermal
diffusivity in the perturbed magnetic field is represented as

xr =x® {1 +C (ﬁ) <|I6Br||2>} ; 9

Veft
wherec; is a positive cofficient: ¢ = Ciwy/ Ves-

3.3. Dependence gf on banana width

In the conjecture (G2) in section 2, one of the candidates characterizing the space scale
of the transport is the width of a banana orhi§, where the banana width is given by

Ap ~ pgV& < Vm/|Byg|. In order to investigate dependence of theffioeent c on the
particle massn, we consider artificial test particles (artificial ions) having the mass of

M = Mest = My/10,m,/100, m,/1000 in the simulations, and estimate the radial thermal
diffusivities, wheram, is the mass of a proton and the charge number of every artificial ion is
set t0Zwest = 1. From the results oy, /x'°} — 1 under the condition ofi|sB;[2)/|6B)? = 1,

it is inferred that the dependencedn the particle massis ¢ « 1/m, as shown in figure 5.

Note that the parameter, /v is independent ain.
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Dependence of the cficient ¢ on |By| is also investigated, and it is inferred that
c « |Byl? as shown in figure 6. Here, in all the cases in figure 6, we change only the
values of||6B;||?)Y/? and|By| under the condition that the rat{tp B ||>)/?/|By| is fixed. From
the results in figures 5 and 6, we see thatz( « |Bol>/m, wherey = {x:/¥°} — 1 and
Z = (wo/ver )II6B[17)/1Brol*.

Therefore, combining equation (9) with the above results, we have a model formula of
the radial thermal diiusivity in the perturbed region:

2 2
=y {1+ N (wb|Bm| ) (IS >}’ 10)

ver M | Byl
wherec, is a positive cofficient and is independent ¢fdB;||>)Y/?, v, m and|By|. Note that

the result in figure 6 is also interpreted as the dependenge®f (||6B;,||?) because the ratio
(16Bx11%)*2/|Byl is fixed.

4. Summary and discussions

In order to investigate the radial thermalfdsivity of a low-collisional tokamak plasma
having a perturbed region generated on and around the resonance surfaces, we apply the drift
kinetic equation solver KEATS to the ion heat transport phenomenon in the tokamak field
disturbed partly by the resonant magnetic perturbations (RMPs). The simulation conditions
are as simplified as possible for the sake of visible prospect. 1) The perturbed region is wedged
in between the regular closed magnetic surfaces. Thus, in the region, there is no magnetic field
line connected to the divertor. 2) The Coulomb collision is assumed to be represented as the
collisions between plasma particles of the same species. 3) Electric field, MHD activities,
neutrals, and impurities are neglected. Under these conditions, we evaluate the radial thermal
diffusivity of ion from the radial heat flux given by the drift kinetic simulations, and find that
the radial thermal diusivity is represented as

2
C0fr L (AR \2( @b OB
S {1+°°(vaAb) (veﬁ) BoP |- (1)

HereXEO) is the neoclassical thermalffiisivity, g is the safety factoR. is the major radius

of the magnetic axiss; is the inverse aspect ratit, ~ py /€ is the banana widthy, is the
poloidal gyroradiusewy, is the bounce frequency; ~ v/ ¢ is the dfective collision frequency,

v is the collision frequency|6B;|>)¥/? is the strength of the RMPs in the radial directions,
Byl is the strength of the magnetic field on the magnetic axiss 1AZ2|Biol?/0PRZmic is
the codficient related tazy, mis the particle mass, an@ is a positive cofficient which is
independent of||6B,||?)Y/2, v, mand|By|. Note that the model formula (11) is derived from
only the results of the drift kinetic simulations.

By the simulation result (11), the conjectures (G1)-(G3) in section 3 are almost
confirmed. The cd&cientc in equation (5) is given bg = (wp/ves M) Co. When the collision
frequency is in the collisionless limit, the thermakltdsivity in the case of||6B,||*) = 0
satisfiesyr = x ~ xN® ~ V& A2ver. A value of the cofficient¢, is expected to bey™ r if
the model formula (11) is connected to that predicted by the FLD theory in the collisionless
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limit. The codficient ¢ evaluated by the simulations is, however, as small as satisfying
0 <& < m, ie., & ~ 10* under the simulation conditions of this paper. This result is
presumed to be caused from that the condidggp/L < 1 is satisfied in the simulations

in the cases of the perturbed magnetic field having the ergodic region, as discussed in [8],
where Aryp is the width of the perturbed regiogyp/a < 0.3) andL is the space scale
length characterizing the plasma confinement, &&,~ v1(||0B;||?)Y/?/v|Byla 2 1. The fact
remains that the céicientcy (or &) is undefined in the present study, and dependence of the
codfticientc, on parameters of the toroidal plasma will be a topic in the future study.

Finally, we discuss transport properties of electron in the perturbed region. The profile
of the radial thermal diiusivity in and around the ergodic region is shown in figure 7, where
the electron thermal @fusivity is estimated by the simulations with both the electron-electron
and electron-ion collisions. The thermaffdsivity of electron is larger than that in the case
of ion only in the perturbed region. As also shown in figure 7, the radial therrfiabdlity of
electron estimated by the simulations is extremely small compared with that predicted by the
FLD theory, which is the same result as that in the case of ion [8]. Dependence of the electron
thermal difusivity on the strength of the RMPs is shown in figure 8. The radial thermal
diffusivity of electronye, depends orjl|0B;||?). We see that the electron thermaffdsivity is
quite sensitive to the strength of the RMPs as compared with the ion therfiuelivty, and
that the radial thermal ffusivity of electron is also representedyas = )((e?){l + c{I6B; |12},
which is the same form as equation (5).
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Figure 1. Poincaé plot of the magnetic field lines on a poloidal cross section in the coordinate
space, where the strength of the RMPs is se(lH&Ber)/l(SBSO)lz = 1 and the RMPs cause
resonance with the rational surfacegjof k/¢ = 3/2,10/7,11/7. The ergodic region bounded
radially on both sides by the regular closed magnetic surfaces is generated betaeeh5

and 075, wherer = v/(R— Ra)?2 +Z2, Rix =36 manda=1m.
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Figure 2. The radial thermal diusivity of ion (proton) at the center of the perturbed region
depends on both the strength of the RMIEB; [|2)/6B”|2 and the density: yi, in each case
of (i) n = nN@ = constant= 1 x 10'° m2 (red squares), (in = 2n@ (yellow triangles),
(i) n = 3n© (green circles) and (ivih = 4n@ (blue rhombuses). The regression lines are
illustrated as the black dashed lines.
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Figure 3. The radial thermal diusivity of ion (proton) at the center of the perturbed region in
each case of|0B|12)/|6B?2 = 1 (red squares) and O (blue circles) depends on the collision
frequencyv. The line ofv/gwy, = 1 is illustrated by the green dashed line, wheres the
inverse aspect ratio ang, is the ion bounce frequency.
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Figure 4. The radial thermal diusivity of ion (proton) at the center of the ergodic
region depends on the collision frequengywhere the strength of the RMPs is fixed as
(||6Br||2)/|68§0)|2 = 1. The regression line is illustrated as the black dashed line. The results in
this figure are given from the data in figure 3.
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Figure 6. The radial thermal diusivity of ion (proton) at the center of the perturbed region
depends on the strength of the magnetic field on the magnetitBaxis Bay, Where|Bo©)| =

4 T is the strength of the magnetic field on the axis in figure 1. The (adiB, ||>)*/2/|By
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