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Abstract

An advanced implicit particle simulation method has been developed and implemented
in the HIDENEK code to study large space-scale, low-frequency electromagnetic phenom-
ena occugring in inhomogeneous plasmas. The present method is specially designed for
high magnetic field {we > wpe), inhomogeneous plasma simulations. The guiding-center
approximation with magnetic drifts is adopted to the perpendicular motion of the elec-
trons whereas the inertia effect is retained in their parallel motion. Also, a slightly back-
ward time-decentered scheme is introduced to the equations of motion and the Maxwell
equations. These equations are combined to yield the full-implicit, coupled field-particle
equations which allow us to determine the future electromagnetic field in a large time step
compared to the electron time scales with the diamagnetic drift and magnetization currents
being included. Three physics applications are shown as a demonstration in terms of the
electromagnetic beam-plasma instability, the temperature anisotropy-driven Alfven-ion-
cyclotron instability, and the external kink instability of the peaked-density current beam.
A remarkable pitch-angle scattering of the ions is observed in the first two applications in
association with the plasma instabilities. In the third application io an inhomogeneous,
finite-beta plasma of the three-dimensions, a helical deformation is shown to take place to

the initially straight beam and magnetic axis in an ideal magnetohydrodynamic time scale.
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1 Introduction

A nonlinear evolution of low-frequency, kinetic instabilities and associated transport
of energy and particles in plasmas have remained an important but unresolved issue of
plasma physics for more than past two decades. In the mean time, as an origin of these
instabilities and transport a certain realm of the high-temperature plasmas has attracted
our attention in which microscopic, kinetic processes strongly affect macroscopic plasma

characteristics and processes with magnetohydrodynamic (MHD) time-and-space scales.

Concerning the above statement, many significant phenomena of space and fusion plas-
mas are known to take place in this kinetic and macroscopic regime. For example, ion
kinetic effects on the m=1 kink mode [1] and behaviors of fusion-produced energetic alpha
particles 2] in ignited tokamaks are just a few of important low-frequency, kinetic problems
of the magnetically confined fusion plasmas. In space and astrophysics, we can find more
varieties of such plasma phenomena. We list, to name only a few, magnetic reconnection —
an active agent of magretic energy release whose dissipation layer has a thickness compa-
rable to gyroradius or inertia length of ions [3], and the kinetic Alfven wave which induces
substantial wave-particle interactions with its longitudinal (non-MHD}) electric field [4].

Since the aforementioned plasma phenomena are frequently accompanied by strong
nonlinear processes, a numerical simulation has been considered to be the only one reliable
approach for theoretical studies. However, until recently it was quite difficult to study these
nonlinear plasma processes using either the conventional time-explicit / hybrid particle
codes or the MHD fluid code. This was precisely attributed to both a kinetic nature of such
plasmas and a disparity of their time-and-space scales with currently uninteresting high-
frequency, short-wavelength plasma eigenmodes or light waves. By contrast, during the
entire 1980’s several types of new and advanced simulation methods were devised in order
to overcome the difficulties. These research results are well-documented in References [5-8].
As will be briefly reviewed in this section, the new simulation methods were successfully

applied to various nonlinear phenomena in high-temperature plasmas.

To summarize, what has been required to the new type of the kinetic, large {MHD)-



scales simulation methods is an ability to treat (1) various kinetic (particle) effects such
as the Landau, cyclotron and bounce resonances with low-frequency waves, and those due
to finite Larmor radius and complicated particle trajectories, (2) a space-charge electric
field and a finite-speed plasma relaxation arising from non-zero electron inertia, and (3)
nonlinear plasma processes under the non-microscopic time-and-space scales, i.e., [duration
time] > wy!, wZ! and [spatial scale] 3> )., p.. Here, wy., we. are the plasma and cyclotron
frequencies, respectively, and A, p. the Debye and gyroradius of the electrons. Moreover,
it should be emphasized that magnetically confined plasmas are often strongly magnetized
(wee > wpe) and quite inhomogeneous; the strength and orientation of the magnetic field
changes in space and time. The electron diamagnetic drift and magnetization currents
are important in the finite-beta {{emperature) plasmas. In fact, these (equivalent) drift
velocities are given by vp ~ (cT./eB) /Ao = 5¢Be(wWee/wpe)(cf Motope) Where f, = 87nT,/B?
is the electron beta value and Ay the gradient scale length of density or the ambient magnetic

field.

The new particle simulation methods developed in early 1980’s have realized kinetic
simulations of the low-frequency, electromagnetic phenomena while eliminating the high-
frequency electron plasma oscillations. However, a difficulty with those methods was a
small time step w.Af < 0{0.1) in order to reproduce the diamagnetic and magnetization
effects of the electrons in high magnetic field, high-beta plasmas. The uniqueness of the
present implicit particle simulation method, on the contrary, is its ability to treal these
diamagnetic drift and magnetization effects under a much larger time step w.A¢ > 1.
This permits us more efficient and accurate simulations of strongly magnetized, high-beta
plasmas with much less time steps. (It is also possible for the present method to choose
the fall-kinetic electrons where the ambient magnetic field is weak or absent {c¢f. Section
2.1)). In the following paragraphs, several large time-and-space scale, kinetic simulation

methods are briefly reviewed.

The first successful implicit simulation method might be the moment implicit method
which derives the implicit moment equations to obtain the future electromagnetic field

[9-11]. The moment equations involve a divergence of the pressure tensor which, by relying



on the fluid concept, is related to the particle velocity moments to achieve a closure of
the moment equations. The velocity moments are calculated once in each time step by
summations over the particles. This class of the particle code known as the ”VENTUS”
code was developed at Los Alamos National Laboratory in early 1980’s and was applied
to laser irradiation and various beam-plasma processes [12]. However, the assumptions
used in relating the pressure tensor with the particle moments restricted the time step to
a moderate value w, At < 10 in warm kinetic plasma simulations. An improved method
has recently outgrown from the moment implicit method to treat the warm plasmas with
a large time step and several demonstrations have been made for one-dimensional plasmas

(CELEST) [13].

The closely-coupled implicit method, which is a subject of this paper, was devised in
early 1984 as an electromagnetic simulation method for multi-dimensional plasmas by fol-
lowing the intuition that the futureward time-shifted electromagnetic field might act to
preferentially suppress high frequency oscillations in the plasma [7). Now this method
satisfies the aforementioned three requirements and additional one for the advanced large-
scale kinetic simulation methods [14]. The technically most characteristic feature of this
implicit methoed, which has been implemented in the HIDENEK (Hyper-Tmplicit, Decen-
tered and Kinetic) code, is a direct determination of the future electromagnetic field using
completely implicit, coupled kinetic equations. Here, a predictor-corrector particle push
is not used to obtain unknown current and charge densities which act as driving forces
in the field equations. Hence, these coupled kinetic equations are named "closely-coupled

field-particle (CCFP) equations.”

Another type of the implicit electromagnetic particle simulation method which is called
the direct implicit method was developed at Livermore National Laboratory and the Uni-
versity of Texas {15,16]. This method constructs a high-accuracy low-pass time filter by
combining the electric acceleration of a few time levels in the equations of motion to control
numerical damping of high-frequency waves in the plasma. The future current density is
explicitly predicted by pushing particles and is implicitly corrected later in the field equa-

tions. A recent progress in the filtering technique is found in Reference [17]. Basically, the




direct implicit method has the second-order (or more) accuracy in time, however, it suf-
fered from substantial and monotonic loss of the particle kinetic energy during the course

of the two-dimensional simulation [16].

The gyrokinetic particle simulation method [8] which was motivated at the Princeton
Plasma Physics Laboratory is conceptually different from the implicit particle methods in
that it derives reduced field equations by gyro-averaging the ion response under assump-
tions of smallness on the wavelength and frequency ky/k, <« 1, w/w, <« 1 and those on
the amplitude of the electromagnetic field. Many insignificant terms are removed from
the original kinetic equations. Efficiency and accuracy of the simulation are therefore
quite reasonable when the ordering assumptions are satisfied. However, when the as-
sumptions become marginally satisfied which occurs with large electrostatic disturbances
ebp [T, ~ O(1) at the plasma edge, for example, or magnetic perturbations § B/ By ~ O(1)
at the magnetic reconnection, many correction terms are required to make the simulation

physically meaningful.

As possibly a comparable kinetic simulation method with the implicit particle methods,
the hybrid particle code with particle ions and massless electrons is sometimes used for the
study of low-frequency electromagnetic phenomena [18]. The hybrid code is quite efficient
since the electron kinetic effects are excluded and is therefore considered to be valid when
the electron inertia effects are completely ignorable. This is the case with a simulation of
the perpendicular magnetosonic shock where the plasma is strongly magnetized with the
magunetic field lying perpendicularly to the simulation plane [19]. However, the hybrid code
becomes increasingly unjustifiable as the magnetic field becomes more oblique or parallel to
the simulation plane so that the electrons are allowed to move along the ambient magnetic

field in an inhomogeneous medium.

in the following two paragraphs, the essense of the closely-coupled implicit method is
qualitatively described in some depth. There was a preliminary {”semi-implicit”) version
which was first developed and applied to variety of large space-scale simulations such as
an excitation of the kinetic Alfven wave and associated plasma heating [20], and current-

beam injection and kink instability [21]. However, the time step was limited to wy,eAf < 1.



Qualitatively much improved version that can deal with ”homogeneous” kinetic plasmas
in large time-and-space scales was then developed [7]. The characteristics of the algorithm
were extensively studied and its validity was proved both analytically and numerically in
the literature. Recently the latter version of the code has greatly been upgraded so that
it can efficiently deal with high magnetic field, high-beta kinetic plasmas in large(MHED)-
scales [14]. Specifically, the guiding-center approximation with the magnetic effects has
been introduced to the electron motion. The parallel motion along the magnetic field line
is traced as particies in a drift-kinetic fashion with —uVB force included. This enables
us the treatment of the diamagnetic and magnetization currents while eliminating both
the high-frequency electron cyclotron and plasma oscillations. These time scales are of the

same orders of magnitude in the magnetically confined plasmas.

The key of the closely-coupled implicit method consists in its complete time-implicitness.
By combining the Maxwell equations with the equations of motion of particles, the closely-
coupled field-particle equations are derived which directly determine the future electromag-
netic field without an auxiliary prediction of the current and charge densities. These equa-
tions are solved actually in the real (configuration) space because the implicitly-expressed
current and charge densities, which are the major driving terms of the equations, vary
considerably in space for inhomogeneous plasmas. This makes the solution in the Fourier-
space difficult and inefficient. The characteristic features of the closely-coupled implicit
method are summarized in Table I. The fundamentally important feature here is that the
low-frequency electromagnetic waves and structures with wyAt < 1 are properly repro-
duced where wq is their characteristic frequency and At the time step of the simulation.
Since the ions and electrons are handled as the particle species, various particle orbit ef-
fects are well simulated by this method. Moreover, the method works numerically well both
in the linear and nonlinear stages of the plasma processes by virtue of the slightly back-
ward time-decentered scheme. These advanced features make the closely-coupled implicit
method quite suitable for studies of kiretic and nonlinear plasma phenomena occurring in

large time-and-space scales.

The outline of this paper is the following. In Section 2, the implicit algorithm of the




closely-coupled implicit method is described in detail which has been implemented in the
HIDENEK code for the study of low-frequency electromagnetic phenomena in high magnetic
field, inhomogeneous plasmas of multi-dimensions. A key approximation and numerical
methods are introduced in Section 3 which permit us solution of the closely-coupled field-
particle equations under the Limited computing resources. Numerical stability and energy
conservation are also discussed. Three physics applications to the low-frequency, large-scale
kinetic plasmas are described in Sections 4-6. Especially in Section 6, a three-dimensional
simulation of the kink instability is shown where a finite-amplitude helical perturbation
develops to the initially pressure-balanced, inhomogeneous plasma with a concentrated
axial current. Section 7 makes a summary of the paper and gives several important remarks

and the procedure of the parameter design concerning the closely-coupled implicit method.



2 Implicit Algorithm for the Low-Frequency Kinetic
Plasma Simulation

This section first presents the fundamental equations governing the electromagnetic
field and particle motion. These equations are discretized in time using the finite-difference
scheme which are then combined to yield the Courant-condition-free, implicit equations to
determine the future electromagnetic field in a large time step compared to the electron
time scales. Finally, an implicit correction methed to the longitudinal (curl-free) part of

the electric field is described.

2.1 The Fundamental Equations of the Field and Particles

In order to realize a kinetic simulation of plasmas in large time-and-space scales, we
introduce a slightly backward time-decentered scheme. The Maxwell equations are used to

describe the electromagnetic field which with time level suffices are written

n+1/2
1/55\n+1[2
Aar) = oVxET (2)
C
V_En-i-l — 41Tpn+1’ (3)
V-B** = (4)

Here, E and B are the electric and magnetic fields, respectively, c is the speed of light, and
« Is a decentering (implicitness) parameter to be specified later. The current density j and
the charge density p are implicit quantities which are to be expressed as the functions of

unknown electromagnetic fields in Section 2.3.

The equations of motion for the ions are the standard Newton-Lorentz equations except

the time level of the electromagnetic field which are given by

dVJ nt1/2 €, n+ta n+1/2 n+a

r = B (x) + (7o) x BU(x ), 5)
dx mHif2 n

&) = ©



A choice of the identical time level ¢ = £*** for the electric and magnetic fields, which
properly reproduces the ponderomotive force due to electromagnetic and Alfven waves,
differs from other implicit algorithms [11-13,15,16). This point will be discussed in Section
7.3. By contrast, the velocity in the Lorentz term must be exactly time-centered to preserve

the cyclotron motion.

For the motion of the electrons, there are two options. The first one is to use the
Newton-Lorentz equations Eqs.(5) and (6) as for the ions, which allows us a fully-kinetic
simulation of the plasma. However, to retain the cyclotron orbit effects such as diamagnetic
drift and magnetization currents, a rather small time step w. At ~ 0(0.1) is required. On
the contrary, we choose the second option of introducing the guiding-center approximation
in order to eliminate the electron cyclotron time-scale w'. The equations of motion
are decomposed into the parallel and perpendicular components with respect to the local

magnetic field, which are given by

duy, \ " (—e) + (ﬂj) 0 gt

—_— f— —t. - /) —pB* 7

( dt ) Me B Me 3z||B g
o E x B\"™ MeC 7 ob \..ie

V.L?; = C(—B'Z—) + {(_ B)b x (m—ZVB_l_vﬁ-’ -aa)} T (8)
dx n+1f2 .

(d_tj) = (v + Vi), ()

In Eq.(7), », is a scalar velocity (sign included) along the magnetic field and y, =
(-;—mevfm /B(:{J))t:0 (= const.) is the magnetic moment of the j-th electron with v,
being its thermal velocity. The unit vector along the magnetic field line b = (B/B) is
defined locally at each particle position. The three terms of Eq.(8) represent the E' x B,

gradient-B and curvature drifts, respectively.

It is important to note that the time indices of each term in Fgs.(7)~(9) must be
consistent with their counterparts in the Newton-Lorentz equation. For example, the time
level of the perpendicular velocity in Eq.(9) should be ¢ = t"*®. Otherwise, the electrons
and ions would show different responses (E x B drift, etc.) to the low-frequency component

of the eleciromagnetic field. The vector "parallel” velocity in Eq.(9) is defined by

vlfLH"z = vﬁ:’l!z b (x,). (10)



The parallel electric field and the differential operator are defined, respectively, by Elrl‘+°’ =

(b™** - E***) and 8/8z = (b™**- V). (Refer to the paragraph in Section 2.2 containing
Eq.(13) for the proof.)

The parameter o appearing in the Maxwell equations and the equations of motion
controls the degree of numerical damping of high-frequency oscillations. The parameter o
must be always larger than £ and in the range % < a < 1. As will be shown in Section 3.3,
the decentering of the time level in the curl terms of Eqs.(1),(2) causes damping of high-
frequency light waves. Attenuation of high-frequency electromagnetic and electrostatic
waves With wA¢ > O(1) which arise from the plasma responses is accomplished by the
decentering of the electric and magnetic fields in the equations of motion [7]. Since a
large time step w,.At 3> 1 is generally used, the Langmuir oscillations are eliminated.
A discussion will be made in Section 3.3 about how the numerical stability and energy

conservation of the simulation are affected by the choice of the parameter .

As noted previously, there are two options with the equations of motion of the HIDENEK
code. The guiding-center approximation of also the ion motion is a natural extension of the
algorithm which may permit us simulations with a larger time step with w;At > 1. The
polarization driit needs to be added to the ion momentum equation to sustain propagation
of the Alfven wave. On the other hand, the guiding-center approximation breaks down
when the magnetic field strength approaches zero, i.c., §E; /B ~ O(1), as is the case with
a plasma with magnetic null points. In this situation, both the ions and electrons must be
treated in a fully kinetic fashion with Eqs.(5) and (6). The algorithm for this case becomes

less complicated compared to that described in this section.

2.2 The Field and Particle Equations in the Finite Difference

Form

The field and particle equations given in Section 2.1 are time-discretized using the finite
difference scheme. The first equation of motion for the ions is written
” n nda n+1f2 gy
Vit = VP A (B 4 (v o) x B, (12)

€
J m;
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where At is a time step and the velocity is defined on the integer time level as well as
the position of the particles to be mentioned later. The tilde quantity stands for the
field that is evaluated at the predicted particle position X, using the linear interpolation

(area-weighting) of the field value which is defined on the neighborhood grids x,,
E®,) = Y, El(xg)S(x,— %)) (12)
g

Here, S(x) is the weight function satisfying [ S(x)dx = 1 which acts to connect the particle
(Lagrange) and field (Eulerian) quantities. The "predicted” position to evaluate the electric

and magnetic fields is the mid-point of orbits which is defined by )_C;HI ’= X242 A v’-’("(;i" 2

3
where v?(';)l 2 is the velocity calculated by means of only the known field values at ¢ = t™.
The choice of the mid-point is particularly important for the magnetic field in the Lorentz
term of Eq.(11) to avoid fictious drifts of particles. For the trapped particles, a special care

might be required to predict their future positions accurately around the turning points.

We solve Eq.(11) in terms of v*' using the interpolation v**1/2 = 3(v* +v™*) to

abtain

. - v ~ -
v1;+1 = v;;+Ate_’{(En+a+_J_ XBn+a) +(_)2El1|n+a.
7 c
. v . -
+ o (En+a+__7 X Bn+o:) an+a}/(1+92), (13)
c

o= AtV (14)
where Eﬁ""" = (BErte . hrte) brie, O(x) = %At(eg/mgc)|i3|“+°‘. It is mentioned in passing
that the first term in the right-hand side of Eq.(13), v7, has been intentionally separated
out of the denominator (14 ©2) which includes the future magnetic field B™+*. In the
|©| > 1 limit which corresponds to the guiding-center approximation, the first-order terms

yield

! ©

Decomposition of the parallel and perpendicular components in terms of the direction of

vl vi+ At—eﬁ?;u {Eﬁ+a + E— (E"“’ + ] X ﬁﬁa) X E’Ha}- (15)
mj <

the magnetic field b*** gives

Vﬂfl & cfnte x prte /Bn"'el {16)
7 ~ B €; (fante fonta
AR At;’j (E™"=- b+, (17)

11



These are obviously the leading terms of the guiding-center equations of motion Eqgs.(7)-
(8).
The equations of motion for the electrons Eqs.{7)-(9) are similarly discretized in time

and are given by

ntl _ .n —€ rn+a Ly a Anta
'U”j = Uib + At (("7;3";) I - (m—e) 8_2,‘”'3 ) s (18)
X = XD At e g gty (19)

"The perpendicular velocity is a function of the future electromagnetic field as specified by

Eq.(8), and the direction of the parallel velocity is defined with respect to b*** by Eq.(10).

The Maxwell equations are discretized with respect to time and are written

En+1 — E* = ¢AIV x Bn+a — 4gAt jn+a, (20)
Bn+1 _ Bn |

—cAtV x E*Fe, (21)

In order to avoid the Courant condition which severely restricts magnitude of the time step
against the given space grid intervals, we eliminate B**! from Eqs.(20)(21) to derive an
implicit equation for E**!. During this algebra, we use for E*** the linear interpolation

of the fleld quantity to the non-integer time level
E*® = oE" 4+ (1-o)E", (22)

and a similar interpolation for B***. This procedure yields the equation to determine the

future electric field B!,

[1+(acAt)’V x Vx ] B = [1-o(l — a)(cAt)*V x Vx] E” (23)

+ cAtV x B® — 4nAt j°te,
Here, the V x B"** term has been split to the V x B” term and the V x V x E terms
which appear on the both sides of Eq.(23). The functional form of the current density in
the right-hand side of the equation is to be specified in Section 2.3. The future magnetic

field is obtained using Fq.(21) once E"*! has been known.

It is noted that, since the inequality (cAf/A)? > 1 holds {(Vx = 1/)), Eq.(23) is

essentially decomposed into the magnetic component V x B = (47/c) j2™ and the

12




electrostatic component E}! = E? — 47At j7™* where (T) and (L) denote the transverse
(divergence-free) and longitudinal (curl-free) parts, respectively. The latter equation is
equivalently transformed into the continuity equation (p**! — p*)/At+V e =0by
using Eq.{3). A deviation of this longitudinal electric field from the true electric field
obtained by V - E**! = 47p"*! will be adjusted later. As has been instructed here, the
unity terms in the square brackets make a significant contribution to the electrostatic
part and cannot be ignored. Despite of simplicity of the decomposed equations, however,
we do not use them in the simulation. The reason against the decomposed equations is
that the above magnetoinductive (Darwin) algorithm requires a compl=te separation of the
transverse current jr (V - jp = 0) from the longitudinal current j; (V x j; = 0). This
is a non-trivial operation in the real-space and for the implicit current density given in
the next subsection; an incomplete decomposition of the current components leads to poor

accuracy and numerical instability.

2.3 The Closely-Coupled Field-Particle Equations

a. The Time-Implicit Equations for the Electromagnetic Field

To obtain the future electromagnetic field by Eq.(23), the current density must be
specified to have a closure of the equation. A prediction of the current demsity in the
Maxwell equations is the key of the implicit algorithm which must be nonlinearly stable
against a large time step. (A prediction without suppression of the high-frequency plasma
oscillations may fail for w,At > 2.) In the present algorithm, the current density is
directly expressed in terms of the future electromagnetic field with the aid of the equations

of motion:
rex) = Y eviteS(x—x3T)
3

. - v . .
— Zel [V? + OzAt-eL {(En-}-a + 3 x Bn-l»a) + GQEﬁ,+a
7= i ¢

. v N - =n+ta
+ o) (En-[-a_}__ci % Bn+a) « bn+a}/(1+e2)] S(X—XJ+ )
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+ (-], + o (( )Eﬁ‘*”‘ (“J) a‘Z"B"“)}Bm

+ FET) S -2 - o Vx D pbrresx— 57, (29)

1=e
where ©(x) = ;A#(e, /m;c)|B|*** and v'11® is given by Eq.(8). The last term of Eq.(24)
accounts for the magnetization current jy = —cV x (p(e)b/ B) of the electrons under the
guiding-center approximation. The symbols 2= and ¥ __ denote summations over the
ion and electron species, respectively. As before, the electromagnetic field with the tilde
is evaluated with the weighting scheme Eq.(12). The time level of ¥, should be again
¢ = £**2 to be consistent with the ion cross-field response. The basic unknown quantities

in the right-hand side of Eq.(24) are E**! and B**1.

Substitution of the implicitly-expressed current density Eq.(24) into Eq.{23) yields the

matrix equation to determine the future electric field E*+!,
A, E** = S (E* B", E* B*). (25)
The matrix 4, on the left-hand side represents a vacuum response which is defined by
A, = 1 + {ecAt)*(VV —1V7), {26)
and the source vector S, on the right-hand side is given by

S, = [1-ofl —a)(cAt)}(VV - V)] E" +cAt V x B”
- vr oo
— 47At {Z €; [V: + aAt(e,-/m,—) (En+a -} ~ci X Bn+a)
1=t

J1+0%)] S(x—=7*) + --..n } (27)
The symbol VV denotes a dyadic operator and 1 the unit tensor. (Refer to Section
3.1 for further modifications of the above equations.) The equations (25)-(27) and (21)
constitute a closed set of the Courant-condition-free, implicit equations to determine the
future electromagnetic field. These equations are named ”closely-coupled field-particle

(CCFP) equations” after their nature of nonlinear coupling of the fields and particles.

14




b. A Correction to the Longitudinal Electric Field

The third and fourth Maxwell equations, Eqgs.{3) and (4), are the conditions to deter-
mine the initial value of the electromagnetic field and they need not be used mathematically
for t > 0. However, it is well-known that a discreteness of the space grids which are com-
mouly used in the simulation introduces a small but finite error to the area-weighted current
density Eq.(24). The error occurs in such a way that the current density thus obtained does
not satisfy the continuity equation with good accuracy, or equivalently, the Gauss’s law
[22]. Hence, a correction to the longitudinal {curl-free) part of the area-weighted current

density is required in each time step.

Strictly speaking, a small deviation in the longitudinal part of the current density
affects both the longitudinal and transverse (divergence-free) parts of the electric field
in the implicit algorithm. However, except for a sharp gradient region in a plasma, the
deviation affects only the longitudinal electric field. Thus, the longitudinal electric field
is corrected afterwards using the Gauss’s law (3) and the expansion method described in
Reference [23]. This correction method is verified since a cross talk between the longitudinal
and transverse components of the electric field, which occurs through the implicit current
density, is by orders of magnitude small compared to non-cross talk terms when the plasma
density and magnetic field are varying smoothly. A similar correction method was used in
the direct implicit method [15,16] and the previous version of the closely-coupled implicit
method {7].

For the correction of the longitudinal electric field, we express the true electric field
E™* as a sum of the electric field before the correction " (the solution of Eq.{25)) and

the longitudinal correction which is a gradient of the scalar function é¢,
E*tl = E" _ Vép. (28)
Substitution of Eq.(28) into the Gauss’s law (3) yields the equation to determine d¢,
~V%p = 4ntt — VEMH (29)

Again, the charge density p"*! which is not known at this moment needs to be obtained

in an implicit fashion to realize a large time step simulation. For this purpose, the charge

15



density is Taylor-expanded in terms of a small displacement due to the correction electric

field V¢ and the vector identity used {23]

PO = T e Sx—xt)
2
> ) eSx-xE)-V- (Z e,6%,S(x — x;‘(‘{)l)) . (30)
2 7
The displacement is defined by éx, = x}*! ~X)3) with x}*! being the true particle position
att =¢"*! and x;‘(‘,*)l the position calculated using the already known electromagnetic field

E"t! and B™*!. The displacement of the ions, for example, is calculated to be
; 1 ;
Y = _-z-a(mf;—{wwv&p x Ob™ + @*Vyse}/(1+0%),  (31)

where the vector operator is defined by Vy = b™*® (b*** . V). Since the final magnetic
field has already been determined together with E™*! at this stage, the displacement §x,,
hence the charge density p"*!, is solely a function of §p. By substituting Fq.(30) into
Eq.(29) and shifting the é¢-dependent terms to the left-hand side, we obtain a completely

implicit equation to determine the correction scalar potential 6o,

Ve + %a(m)zv (WA (x){Vop + 67780 + OVép x b}/(1+ e'%)
+ Wl (x) V“&p) + 4dr(—e)calt V - (Vép x (b/B) n.(x))

= —4rpt 4 VB (32)

Here, the 0 — ¢h order charge density is defined by g"*'(x) = ¥, ¢,5(x — x;‘(“;)l) and
o (x) = 47n,{x)eZ [m,. It should be noted in Eq.(32) that the vacuum response is mostly
shielded by the plasma dielectric response. The ratio of the plasma response to that of the
vacuum is approximated by 2a(Af)’(w?(x) + byw?.(x)) Whi'ch is much greater than unity

in the plasma due to w2 At > 1.

The procedures of the simulation using the method described here are summarized in the
Appendix. The particle ions and electrons are first generated in fh.e Cartesian (x, v) space.
After collecting the current and charge densities, j* and (%), the initial electromagnetic
field is determined. Using this magnetic field, the electron velocity is converted from

the Cartesian to (u, vy, v) representations. Then, a time cycle of the simulation begins.
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First, the current density j and the charge densities of the ions and electrons p,, p. are
summed over particles. The electromagnetic field E**! and B**! are solved unsing the
CCFP equation Eq.{(25) and (21). Next, the charge densities at time ¢ = t**? are summed
to make the correction to the longitudinal part of the electric field using Eq.(32). Finally,
the velocity and position of all the particles are advanced by a full time step to proceed to

the new time cycle.
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3 Numerical Methods for the Implicitly Coupled Equa-
tions

Following the description of the implicit simulation algorithm in Section 2, this section
gives a key approximation and guidelines of the numerical techniques which facilitate so-
lution of the coupled field-particle equations. Dependence of energy conservation of the

simulation on the implicitness parameter is also discussed.

3.1 A Key Approximation in the CCFP Equations

Here, we present an important and accuracy-preserving approximation which makes
the solution of the CCFP equations possible under the limited computing resources. As
have been described in Section 2, the implicit current and charge densities Eqgs.(24) and
(30} consist of summations over the particles with the unknown electromagnetic field being
involved. Calculation of these terms, which represent a coupling of the adjacent plasma
elements through the electromagnetic field, becomes inhibitedly expensive unless the fol-

lowing approximation is introduced to these coupling terms:

L AE)S(x—x) = 3 f{a(BE(x,) - Bulx,)) + Bolx,)} S(x —x,) (33)

= aF(X)(E(x) ~ Ea(x)) + 3 fiBo(x,) S(x—x,) (34)

where E, is a quantity which well approximates E**! and E, = oE, + (1 — a)E*. The
linear interpolation Eq.(22) has been used in the equality of Eq.(33). Note that (E™+! —E)
is paired in Eq.(34) to minimize an error associated with this approximation, and that
the tilde is removed from this term. The summation of f, over the particles becomes
F(x) =L, f,S{x — x,). Thus, the unknown electromagnetic field is separated out of the
summation over the particles. Using this approximation, Eqs.(25)-(27) given in Section

2.3(a) are rewritten

A(n,, Ne; BrH-I) En-l—l — S(En, Bn; Bn+1). (35)
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Here, the matrix A comprises both the plasma and vacuum terms as defined by

A = 1 + (acAP(VV ~-1V?) + D
D = (aAt) (wi(x){1 - Ob™= x 1 4+ ©°(bb)"**}/(1 + %) (36)
+ w2,(x)(bb)**%) — 4r(—e)calt (nx)/B) b+ x 1,

where (bb) is a dyadic tensor and w? (x) which is proportional to charge density p, can
be highly space-dependent. The unknown electric field E"*! has been removed from S, to

obtain the new source vector

S = [1—a(1—-a)(cAt))(VV — V?)] E" +cAt V x B”

+ DE; — 4wAt {Z e, [vi + alt(e,/m;:) (f}o + 16'1- x ﬁn+cx)

7=

J(1+0%)] S(x—%+) + - } (37)

As E, we often use the electric field of the last time step. When E; is chosen independently
of the iteration for solving the coupled field-particle equations, the summations in Eq.(37)

need to be calculated only once before the commencement of the iteration.

It is extremely important to note with the aforementioned approximation, that a ma-
jor contribution to the summation 3 f, E"teS(x — x,) is contained in the second term
of Eq.(34) for which the double summation is taken "accurately” while preserving the
kinetic flavor of the original equations. The first summation is taken to calculate E(x,)
using Eq.(12) and the second summation to obtain 3., ,E(x,)S(x — x,). The accuracy
of this approximation was numerically proved in the previous literature for the thermal
eigenmodes in the 2-D magnetized plasma and for the kinetic Alfven wave in the finite
temperature plasma {7]. The present approximation greatly contributes to minimize a
degradation of energy conservation. By contrast, a simpler but less accurate approxima-
tion, f.e., %, £ Ee(x,)S(x — x,) & F(x)E™* has been tested in the application to be
shown in Section 4. However, the latter approximation results in a rapid and monotonic
decrease in the kinetic energy, especially that of the electrons. The loss of the kinetic energy
may be attributed to the totally fluid-like treatment which eliminates a kinetic coupling in

the plasma.
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3.2 The Solution of the CCFP Equations

It has been shown in Section 3.1 that the closely-coupled field-particle (CCFP) equa-

tions are cast in the form of an implicit matrix equation:
AT = S(¥). {38)

Here, ¥ is an unknown column vector representing the electric field to be solved, A the
matrix which includes both the plasma response and vacuum terms (V x Vx), and S
the source vector. Since the source § depends on ¥ nonlinearly due to the choice of the
magnetic field at the intermediate time level, we need to use an iterative method for the
solution of the matrix equation (38). In fact, E*te x Br+e term, for example, depends on

E"*! quadratically since B**! is a function of E*+1.

The method that we adopt to the solution of the nonlinear equation Eq.(38) is a re-
laxation method. First, all the ¥-linear terms in S (¥) are shifted to the left-hand side to

treat the equation as implicitly as possible,
LY = Q¥). (39)

This equation is solved to obtain ¥(*) = L=1Q(¥()) by assuming that Q(¥) is known.
The superscript (r) denctes the last cycle of the iteration. The new value of the (r+1)-th

cycle is given in a Newton-Raphson manner,
TOH) = e TP 4 (1-¢) ¥ (0<e< ). (40)

The new value ¥+ is then back-substituted to Q(¥) in the right-hand side of Eq.(39),
and the iteration is resumed until a relative variation of the norm |¥| becornes smaller
than a given tolerance. When the ¥-nonlinearity of ¢} is not so strong, ¢ = 1 can be used
in Eq.(40). However, even when the VU-nonlinearity is weak, the back-substitution must be
executed at least once and Eq.(39) be solved twice; in the first cycle of the iteration, the

unknown B"*! is being replaced by B” in Eq.(25).

In order to take an advantage of the implicit algorithm, 7.e., to be free from the Courant
condition, the above iteration must be repeated several times to ensure that physical in-

formations propagate in space to adjust themselves. If we start from a good initial guess
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which is usually the field value of the last time step, only a few iteration cycles are re-
quired before Eq.(38) converges. Actually in one-dimension, the sclution of Eq.(39) with
the Gaussian elimination method requires only a few (typically four) iteration cycles before

the iteration converges for the tolerance of 107°.

Concerning the solution of the core equation (39), several methods have been tested
to invert the matrix L. Experiences imply that an accurate solution of the core equation
is essential to the nonlinear iteration described here. In the one-dimensional case, the
Gaussian elimination method has been successfully applied since the matrix L is a sparse
band-matrix connecting the quantities of the spatially adjacent grids [24]. However, in
the three-dimensions with N, x N, x N, grids, the matrix L becomes a huge band matrix
whose column size is of the order of (N,N,N,). This makes the Gaussian elimination
method impractical to use by memory and accuracy reasons. Alternatively at first, an
iterative method was applied to Eq.(39) where only the diagonal terms were retained in
the left-hand side to solve the equation and the new solution was back-substituted to the
right-hand side of the equation. This iteration for the core equation converged but energy
conservation degraded eventually in the simulation because the nonlinear ¥-iteration was

affected by inaccuracy of the core equation solution.

In order to get 1id of the aforementioned difficulty encountered in the solution of the
core equation (39), the bi-conjugate gradient (BCG) method [25] has been introduced.
In the BCG matrix solver, a recursive solution converges steadily to the final solution
which is to be obtained in a finite number of iterations. Practically, a convergence of
the BCG solver depends on the method of preconditioning the original matrix. A block-
{ype BCG solver prescribes the 3 x 3 core matriz elements simultaneously as a block; the
core matrix corresponds to the diagonal element ¥.; = (E,, By, E.)yyx- On the other
hand, a scalar-fype solver preconditions each row of the matrix separately. The block-
type solver converges much faster than the scalar-type one when the skewed symmetric
elements of the core matrix which arise from the E x B drift are predominant over the
diagonal elements. The accuracy of the solution obtained by the BCG method is quite

satisfactory, and therefore, the reliability of the nonlinear ¥-iteration and the simulation
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itself have improved dramatically (Section 6).

For the solution of the closely-coupled field-particle equations, the real (configuration)
space 1s used in the present implicit method (HIDENEK). This is because the matrix L
of the CCFP equations in Eq.(39) is highly space-dependent and the Fourier-decomposed
left-hand side FFT™'{L¥} becomes a convolution of almost all the Fourier modes for
the inhomogeneous plasma simulation. This is particularly the case in the application of
Section 6 where a large helical perturbation takes place in the plasma density and the
magnetic field structure in association with the kink instability. In the real-space, by
contrast, the matrix I causes a coupling of only three points in one-dimensional case and
27 (= 3%) or less adjacent grid quantities in the three-dimensional simulation. Therefore,
the present implicit algorithm prefers to treat the spatial localization and inhomogeneity
of the phenomena in the real-space; even for a weakly inhomogencous plasma, the iteration

of the CCFP equation converges more rapidly in the real-space.

To spatially discretize the closely-coupled field-particle equations, a unique set of the
non-staggered space grids is used. The choice against the staggered (interleaved) grids
is that they make the boundary conditions and coding of the CCFP equations quite
complicated in three-dimensions which results in less-sparse band matrix I in Eq.(39).
With the non-staggered grids, all the particle informations are accumulated to the same
non-staggered grids on which all the electromagnetic fields are calculated. The center-
differential scheme is used for the spatial derivatives so that their mid-points be centered
with respect to the non-derivative terms in the field equations. The spatial derivatives

have the second order accuracy in space.

The normalization of physical quantities to be adopted in the applications of Sections
4 - 6 is related to the electromagnetic waves [31]. This consists of four basic units, the

length: c/wpe, time: o', mass: m, and electronic charge: e (absolute value}. The ()

quantities are normalized quantities which are used ir the simulation:

Fe— dmwgd, = a2l (41)
cfwpe A

Other quantities such as the velocity, frequency and electromagnetic fields are normalized
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by combining these basic units:

R A B
o= B= 22 B=_=

V= .
Wpe M Clpe M Cliipe

o<

(42)

3

With this normalization, the constant in the field equations is transformed as (47) — (1/n0)
and the light speed {c) disappears everywhere (ng: the average particle number density

per unit-length cube).

3.3 A Choice of the Time-Decentering Parameter and Energy

Conservation

The implicitness parameter o which appears in the equations of motion and the CCFP
equations must be in the range of 2 < @ < 1 to damp out high-frequency electrostatic and
electromagnetic oscillations numerically. The proof of the high-frequency wave damping in
[7] (Section 3) applies to the present HIDENEK algorithm. Here, we will show the stability
and energy conservation of the present algorithm, especially, against the electromagnetic

waves and the electron E x B drift.

First, we focus on the electromagnetic response of the algorithm and prove its numerical
stability against electromagnetic waves. Since the fast (electron) time scale is considered
in this analysis, the ions are assumed immobile and only the electron current is taken

snta _

into account: j; (—e)nocE™® x By/B:. For the monochromatic plane wave E, B =

Ex, By x expli(k - x — wt)], we have
_wAt EYY? = {icAtk x B*TY? — QpAt B2 x by} exp (~z’(a —~ %)wAt) :
1
—iwAt B = icAt k x E™2exp (—i(oz - E)wAt) , (43)

where Qp = 4mc(—e)no/ By = w2, /we. Eliminating B™*1/? from Eqs.(43) and equating the

determinant with zero, we obtain the dispersion equation

(1 - (%)2 exp (-23'(0: - %)wAt)) + fCZL)—}':;exp (—z'(a - -;—)wAt) = 0. (44)

In the vacuum (Qz = 0), we obtain the frequency w, = +ck and the growth rate w, =

~ck(o — %)wAt. The choice of o > % damps the light waves. In the plasma, the solution
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to Eq.(44) for the long wavelength limit Qp > ck (ie., wyofw,. > ck fw,.), becomes

Wy = ZEQB

w2 (o 2)(@ + (ch) At (45)

Unfortunately, this solution applies only for |2z[At < 1. Thus, a numerical solution
of Eq.(44) is made for wyfw, = 1, @ = 0.6 and w, At = 100 (the parameters used
in Section 6). The imaginary part of the frequency becomes negative which starts with
wifwpe 2 —5.8 x 107° at ck/wy = 0. The magnitude of the damping rate increases with
the wavenumber and we have w/w,. 2 0.95 — 5.3 x 1072 at ck/w,. = 1. For a > 1/2, the
algorithm becomes stable both against the light waves and electron E x B drift current

JiT® in the plasma.

Next, we will show the dependence of the energy conservation on the decentering pa-
rameter . In this analysis we use the following definition as the change in the system

total energy
AWie = AWp + ) AWk, (46)

This is a sum of the change in the electromagnetic field energy and that in the particle

kinetic energy [10]. Each term of Eq.(46) is defined by

1

AWp = a_ /[En+1/2 . (En+1 - En) 4 Bn+1[2 . (Bu+1 _ Bn)] dx
"

AWy, = Zm,-v;’H/Z (v =V,
J=l

AWk, = 3 [l Pt ot ) + Alrma? + 4B 47

Ke = meUHJ (v“} Ui|j)+ (zmey_!_;_*_#,’f )]7 ( )

3=e

where AU = ¥ — Y™ The thermal energy smevly, = i, Bis added to the kinetic energy

of the electrons because only the drift motion is included in the guiding-center velocity v, .

We rewrite the above equations by using the equations of motion and the Maxwell

equations, Egs.(1)-(9), and note the linear interpolation for E*+*

1
Erte En+l,’2 T (CE _ 5)(En+1 _ En), (48)
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and a similar one for B**, Eliminating E***/? from AWp using Eq.(48), we obtain the

change in the field energy

AW, = A / V- (E**® x B™e) dx — At f Erte . jrte gy
]‘ 1 ntl _ T n+l _ an
la=3) (B —E) + (B - BY] x. (49)

The change in the kinetic energies of the ion and electron species, respectively, is calculated

to be

AWy = At [ Erte . 2y, (50)
AWg, = AL [Epr i dx+ z —me{(v"“ (7,7} (51)
The electron kinetic energy does not change in association with the —u. Vi B force because

the energy is internally transferred between the parallel and perpendicular components.

Thus, the change in the system total energy is given by

N / V. (B x B™) dx
1 l s n n n
- la—3) [IE -E + (B - B dx
nta *n 1 n ke
-8t B - b+ DG - (48 62

1=
where j, = ji + jj- The second and third terms are negative definite for @ > £ since in the

integrand of the third term j*** — 412 = (o — DAL [(e2/m,)E™* + (&2 /m.) B} ).

The equation (52) gives the change in the system total energy which is inherent in the
present algorithm. The firsi term of Eq.(52) is the Poynting flux which occurs physically.
The second term is the energy loss associated with the numerical damping of the oscillating
electromagnetic field. The third term arises due to an inbalance in the joule heating which
is predominant in AW;e. The choice of & =  in Eq.(52) recovers the energy conservation
law for the leapfrog scheme which is accurate to the second order but is conditionally
stable only for w,. At < 2. In order to get rid of unimportant high-frequency oscillations
in the plasmas, the value a = 0.55 — 0.6 is chosen in the closely-coupled implicit method
(HIDENEK) by a trade-off between the numerical accuracy and stability of the code against
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particle noises. (The simulation code must be nonlinearly stable.}

In contrast to the above argument, we actually use from the physics point of view the
standard definition to monitor the total energy of the simulation system
1 2, 2 1 2
Wit = S—W/[B +Edx + ¥ zm,v? (53)
FE K]

Here, 3m.v? = gme(uf + vi,} + p, B(x,) for the electrons where v, represents only
the drift motion. A contribution of the constant magnetic field energy BZ is excluded in

Eq.(53).
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4 The Electromagnetic Ton Beam-Plasma Instability

The first application of the closely-coupled implicit method to the low-frequency non-
linear plasma phenomena is a one-dimensional simulation of the electromagnetic ion beam-
plasma instability. When a tenuous ion beam propagates along the ambient magnetic field
through a dense background plasma in a velocity faster than the Alfven speed v,, the
electromagnetic ion-ion beam-plasma instability is excited [26]. The instability was inves-
tigated in connection with the diffused solar wind ions reflected from the earth’s bow shock.
Also a hybrid-particle simulation with particle ions and massless electrons was performed

to find the origin of these ions [27].

Formerly, the hybrid simulation with particle ions and massless electrons used to be
a major tool of simulating the low-frequency electromagnetic waves and instabilities. Im-
plicit assumptions behind the hybrid simulations are (1) the quasi charge-neutrality of the
plasma, (2) no electron orbit effects, and (3) instantaneous relaxation {adjustment) of the
electrons. Since the electron inertia and orbit motions are ignored, particle and energy
transport of the electrons along the magnetic field is beyond the scope of the hybrid sim-
ulation. This situation occurs, for example, in the parallel shocks where the electrons are
allowed to move freely along the magnetic field. By contrast, in the closely-coupled implicit
method, the electrons are treated as independent particle species so that their relaxation

along the magnetic field is naturally taken into account.

The dispersion equation for the electromagnetic ion beam-plasma instability propagat-

ing along the ambient magnetic field is given by [26,27]

w —C2k2 Z g W— ]CI/dj Z(w kV:iJ +UJCJ) _ 01 (54)

kv

7

where w,, = (d7n,€; 2/m, )2, w,, = e,B/m,c are the plasma and cyclotron frequencies of
the j-th species, respectively. Z(£) is the plasma dispersion function, v, = (2T, /m,)/* the
thermal speed and V), is the drift velocity along the ambient magnetic field. There are two
unstable roots to Eq.(54) which are either resonant (kV; > 0) or nonresonant (kV; < 0).
The resonant mode has a larger growth rate and its typical frequency, growth rate and

wavenumber in the Vz/v4 > 1 and ny/ng < 1 limit are w, fw, ~ 0.2, w,fw, ~ (ry/ 2ng )13
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and kVy/w,, ~ 1, respectively, where n, is the density of the beam ions.

The parameters chosen in the HIDENEK simulation are the ion beam speed V; = 10v,,
the beam density ny/no = 0.015, the ambient magnetic field strength we,/w,, = 1072, and
the electron plasma beta g, = 87n,T,/B* = 1{28]. The electron and ion temperatures are
the same, T;/T. = 1. The system is periodic along the ambient magnetic field (2-direction)
with the length L, = 2560c/w,. and 128 space grids. The mass ratio is m,/m, = 100 and
the number of particles for each species is 16,384. The time step is wpe AL = 2500. The
decentering parameter is @ = 0.6. A numerical filter is not applied. These parameters
correspond to WAl = 2.5 x 1072, v, At/Az = 0.13, and Az/A, = 3 x 10* with A, =
Ve[ V/2uwy, being the Debye length.

Figure 1 shows the time histories of the perturbed magnetic field energy, the kinetic
energies of the beam and background ions, and the parallel kinetic energy of the electrons.
The instability grows exponentially and the magnetic field energy peaks around w,t ~ 70.
The electric field energy is roughly (v4/c)® times that of the magnetic field energy. Later
the magnetic energy decays to a quarter level compared to the primary peak and small
peaks follow the primary one periodically. Large decrease in the beam kinetic energy occurs
in coincidence with the growth of the instability. The background ions are heated roughly
by 20 percents, but the electrons are hardly affected. As is found by comparing Figure
1{(a)-(c), the beam kinetic energy is mainly converted to the magnetic energy and to some
extent to the background ions at the growth of the instability and vice versa during the

relaxation oscillations.

The large decrease in the kinetic energy of the beam ions is attributed to the decrease
in the drift speed (Figure 2(a)). Except a temporary recovery of the beam speed at
Wat ~ 90, the beam speed continues to decrease. This reveals that a part of the drift
energy irreversibly goes to the thermal energy of both the beam and background ions.
Conservation of the total energy slightly degrades at the growth of the instability which
is expected from the discussions in Section 3.3. However, the total energy deviates by 5%

during the saturation of the instability and it recovers to within 2% in the later times.

The electromagnetic field at the saturation time of the instability w,t = 80 is shown in
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Figure 3. The observed wave that is excited by the instability is circularly polarized and
is consistent with the linearly most unstable mode (m = 4 ~ 5) of the electromagnetic ion
beam-plasma instability. The electric field looks somewhat jagged because the numerical
filter has not been applied. But, the phase relation between the corresponding pairs of the
electromagnetic field looks fine, i.e., B, ~ —E,, B, ~ E;. The frequency and the growth
rate are measured to be w/fw, = 0.22 4 0.15¢ for the mode m = 5 which are in reasonable

agreement with the theoretical value Wt Jwe = 0.23 4 0.19¢.

The nonlinear behavior of the beam ions is shown in the particle scatter plots of Figure
4, The ions sitting initially around V; = 10v,4 (Figure 4(a)) are significantly affected by
the instability as shown in Figure 4(b) for w,t = 80. Obviously, the average beam speed
has drastically decreased. When viewed in the (v,,v_ ) space, the beam ions are scattered
in the pitch-angle and they finally become equally distributed along the arc whose center
is located on the v; = 0 axis at (v4,0). Formation of the equally distributed arc is
clearly seen at w.t = 200 in Figure 4(c). As noted previously, the electrons behave almost
adiabatically. Although the electrons carry substantial E x B current in the perpendicular
direction, they are hardly affected and heated by the instability because the wave frequency
is by orders of magnitude smaller than the electron cyclotron frequency, w/w. < 1.

Before closing this section, a comparison of the present results with those of other
implicit and hybrid particle codes is briefly made. The difference beiween the HIDENEK
and CELEST codes is that the former chooses the magnetic field B™** in the equations
of motion and optionaily the guiding-center approximation to the elcctrons, whereas the
fully kinetic electrons and B” are used in the latter [13]. The hybrid simulation requires
artificial viscosity to control (damp out) spiky oscillations in the perturbed magnetic field,
especially when the ambient magnetic field lies close to the simulation plane [27], which
makes the simulation results somewhat artificial. Despite these diff:rences, the growth
and saturation of the instability and associated nonlinear results such as scattering of the
beam ions and decrease in the beam drift speed have agreed generally well among the three
simulations of the electromagnetic ion beam-plasma instability. The detailed comparison

will be made elsewhere.
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5 The Anisotropy-Driven Alfven-Ion-Cyclotron In-
stability

As the second application of the HIDENEK code, the simulation of the Alfven-ion-
cyclotron (AIC) instability is shown. A source of the free energy for this instability is the
ion temperature anisotropy. The AIC instability is generated at the neutral beam injection
into tokamaks [29,30] and in association with very anisotropic ions in the foreshock region
and the dayside region of the magnetosphere of the earth [31-33]. The AIC instability was
shown to play a major role in generating the back-streaming ("reflected”) ions from the

earth’s bow shock [31].

The dispersion equation of the Alfven-ion-cyclotron wave which propagates parallel to
the ambient magnetic field is given by

w

W — 2R 4 wﬁe(kv YZ(£.) + w;(ﬁ“)Z(g,)

(T e =
- (1= nrene = o £

where £ = (w £ jwee|)/bve, & = (WF We)/kvy, and v, v; are the thermal speeds of the
electrons and ions, respectively. The perpendicular temperature of the ions, 7, , is defined
by

T, = 271’];: duy jomdv_LUJ_ (%m,u_",)_) Filwg, vp). (56)
Here f,(vy,v.) is the velocity distribution function of the ions. When the perpendicular
temperature is larger than the parallel temperature, 7.e., (T1/T}), > 1, the AIC waves
become unstable. The typical frequency in the large anisotropy limit is w, [we ~ 1, the
growth rate w,/w, ~ (8,1/2)"/? and the wavenumber ckfwy, ~ 1 where §,, = 87n,T,,/B*
is the ion beta value in the perpendicular direction. The aforementioned dispersion equa-
tion implies that any ion velocity distribution with the same temperature anisotropy is

equivalent in generating the AIC instability [29,31].

At the beginning of each simulation, the ions are loaded so that their temperature
anisotropy becomes (Ty/Tj)io = 5 ~ 20. The electrons are loaded isotropically. The other

parameters are the system size L, = 120c/w,, the electron thermal speed v,/c = 0.2, the
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temperature ratio Ty /7. = 1, and the ambient magnetic field strength w../w,. = 0.7. (Note
that the electron cyclotron frequency does not appear in the simulation.) This corresponds
t0 weifwp; = 0.1 for the choice of m; /m, = 50. The ion parallel beta value £y = 87n;Ty /B2
becomes approximately 8 x 1072, The system is periodic in the z-direction and the number
of the space grids is 128. The number of particles for each species is 12800, the time step
Wpe AT = 20 (wy At = 0.28), and the decentering parameter is & = 0.6. The quiet start

technique of loading four particles in pair is used to minimize the initial noise.

The time histories of the perturbed magnetic and electric field energies are shown in
Figure 5 for the (T’ /T})); = 20 case. The magnetic field grows exponentially out of the ini-
tial noise level and saturates around wt ~ 20. For the electric field, since the electrostatic
noise field initially dominates over the electromagnetic component, the instability appears
to emerge abruptly at w,t ~ 10. The growth rate of the instability is measured to be
w;fwe ~ 0.44 for the most unstable mode (m = 3) with ck/w,, ~ 1.1. This is in excellent
agreement with the linear theory of the AIC instability, w® /wy; = 0.84 4 0.45i. Relaxation
of the ion temperature anisotropy, (I’ /T})),, is shown in Figure 5(c). When the intensity
of the perturbed magnetic field reaches a certain level, i.e., < §B? > /8xnT; = 1 x 1072,
the temperature anisotropy begins to decrease. This process occurs relatively in a short

time scale, 13w;" for the (T /Ty )ic = 20 case.

The total energy of the system decreases by a few percents as shown in Figure 5(d).
The decrease in the total energy is clearly associated with the buildup of the electric
field energy due to the growth of the instability. After the instability saturates around
wet ~ 20, the decrease in the total energy becomes slower. This behavior of the total
energy is consistent with the argument in Section 3.3; the first integral of Eq.{(52) vanishes
in the periodic system, and the second integral which is p.ositive definite becomes largest
when the electromagnetic field amplitude changes rapidly. Hence, [dW,,/d¢| takes the

maximum value at this stage.

A series of ion scatter plots in the (v, v1), (2, v)) and (z,¢) spaces in Figure 6 shows a
remarkable pitch angle scattering of the anisotropic ions during w,t = 10 ~ 20. Here, ¢ =

tan™!(v,/v,) is the phase angle of the perpendicular velocity of the ions. This scattering
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is most clearly observed at the change in the ion distribution in the (v, v,) space; the
distribution evolves from the initial needie-like distribution into an isotropized, round-
shaped distribution. The anisotropy becomes completely relaxed by wyt ~ 50. This
pitch-angle scattering is the origin of the decrease in the temperature anisotropy shown in
Figure 5{c}.

In order to check the relaxed final temperature anisotropies, several runs are made
systematically. The run with the small anisotropy (7. /7}).c = 5 requires a long run up
to wet ~ 300 to have a complete relaxation of the anisotropy. For the (T /T}),; = 20
case, another run is performed with a longer system size L, = 240c/w,e because the
longer wavelength modes can be still unstable in the late stage of the instability with
reduced anisotropy. The anisotropy ceases to decrease completely at w,t ~ 70. The
final temperature anisotropies thus obtained for the initial anisotropies of 5, 10 and 20
are, respectively, 2.0, 1.8 and 1.9. The fact that the relaxed temperature anisotropy,
(TL/Ty). = 2, is almost independent of the initial temperature anisotropies agrees with the

previous literatures [29,31].

A more interesting observation is the modulation of the ions and elecirons both in the
velocity and configuration spaces. The ion modulation in the phase space (z,%) at the
end of the linear stage (Figure 6(b)) is in-phase with the magnetic perturbation and by 90
degrees out-of-phase with the electric field of the AIC wave. Afterwards in the nonlinear
stage, the density modulation develops. A good spatial correlation is found between the
lon density modulation and the intensity of the magnetic field |6B|%(z); the ion density is
higher where the magnetic field intensity is lower, and vice versa. The electrons undergo
nearly the same density perturbation in the configuration space. This density perturbation
may be attributed to the electromagnetic ponderomotive force < 6E x §B(z) > due to the
finite amplitude AIC waves {34] (cf. Eq.(67) in Section 7.3).
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6 The Kink Instability in the Three-Dimensional Space

The most challenging and stringent test of the HIDENEK code will be a simulation of
low-frequency instabilities which occur in the finite-beta, inhomogeneous plasmas of the
three-dimensions. The diamagnetic particle drift and magnetization currents are impor-
tant to maintain the pressure-balanced plasma profile. Moreover, in the three-dimensional
space, the F x B drift works in a subtle way so that it causes a motion of charged par-
ticles across the magnetic field leading to a coupling of electrostatic and electromagnetic

components of the electric field.

A three-dimensional simulation of the Alfven critical current [35] for the relativistic
electron beam was carried out previously by using the semi-implicit version of the closely-
coupled implicit method and the kink instability was observed there [21]. In this section,
the closely-coupled implicit method described in Section 2 is applied to the kink instability

of the current-carrying beam which has an inhomogeneous peaked-density profile.

The simulation is performed in the Carteslan space (z,y, 2, ¥;, 9, v,). The size of the
simulation box is L, = L, = 100c/w,, and L, = 2000c/w,, with 27 x 27 x 32 grids. The
z and y-directions are limited by conducting walls and the both ends of the z-direction
are periodically connected to each other. The average number of super-particles per cell is
sixteen for each of the electron and ion species which amounts to 320,000 electrons and ions,
respectively. The initial plasma has a bell-shaped density profile, ng(r) ~ exp[—(r/L,)?],
with L, = 37c/w,. where 7 is the radial distance from the center of the poloidal {z, y) plane.
There is a vacuum region between the plasma and the wall. The constant magnetic field
is applied in the z-direction along which a drift velocity is given to the ions to maintain
the peaked, inhomogeneous plasma profile by the magnetic pressure. The drift speed
and the plasma temperatures must be consistently chosen so that the pressure balance
n(T, + T;} + B* /87 = const. be satisfied radially. Otherwise, a rapid pinch (or expansion)

of the initially-loaded plasma results in the finite-beta plasma simulation.

Other parameters are the ambient magnetic field strength % /w,. = 1, the temperature

ratio T./1; = 1 and the electron beta value §, = 87n.T,/B* = 0.04. The mass ratio is
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m;/m. = 400 and the time step is wp At = 100 (i.e., wyAt ~ 0.25). The implicitness
parameter is o = 0.6. The safety factor of the plasma, which is the ratio of the number
of toroidal rotation of the magnetic field line to that of its poloidal rotation, becomes
g9 (r) ~ 0.6 at the radial distance » = L. Thus, a helical rotation is initially present in the
magnetic field structure {not in the current). By contrast to one-dimensional simulations
m Section 4 and 5, a digital filter is introduced to smooth the source terms of the CCFP
equations. The digital filter helps to reduce the fluctuating electric field level arising
from a grid-to-grid scale charge separation of plasma particles for which the finite spatial-
differencing does not have a correct resolution. The weight of sampling for the consecutive
five points along one direction is (—1/16,4/16,10/16,4/16,—1/16) (cf. Appendix of [5])

and the digital filter is applied once to each directior in a tri-linear fashion .

The simulation run has been continued up to wyt = 2.6 x 10* or £ = 3.57,. Here, the
poloidal Alfven time is defined by 74 = 2L, /v, ~ 7.4 x 10°%w>} with va, = B, /(4rm,n)!/?
being the poloidal Alfven speed. The time history of the magnetic field energy is shown in
Figure 8(a) (the constant part (B;)? has been omitted). A sudden increase in the magnetic
field energy takes place at the beginning of the simulation. This is a self-adjustment of
the beam-plasma system because the initial current flows in the z-direction which is not
exactly along the helical magnetic field. The magnetic field energy increases gradually to
t = 3.574. The electric field energy is dominated by the component due to the radial
electric field which appears to be almost independent of the instability. The ion kinetic
energy in Figure 8(b) increases slightly during the simulation which is attributed to an
increase in the perpendicular temperature. On the other hand, the electron kinetic energy
decreases monotonically which arises from a decrease in the parallel temperature. This

is considered to be an artificial cooling caused by incomplete Debye shielding. The total

energy of the system deviates about £5% during the simulation as shown in Figure 8(d).

The cross-sectional plots of the current and charge densities of the ions at the mid-plane
(y = L,/2) are shown in Figure 9 for (a) ¢ = 0.27r, and (b) # = 3.27,. The left-hand side
panels correspond to the early state after the initial transient motions have subsided. In

the right-hand side panels, we can see a deformation of the beam current which has been
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projected to the toroidal mid-plane. The dominant mode number of the deformation in the
z-direction is found to be n=1. The whole aspect of the deformation of the beam current is
better observed in the bird’s-eye-view scatter plots of ions and electrons in Figure 10. The
top panel is the plot for the ions at £ = 0.2774 and the middle and bottom panels show
the jon and electron species at ¢ = 3.27,4, respectively. Almost the same spatial distortions
are observed both in the electrons and ions. Here, it is found that the aforementioned

deformation is a helical perturbation which is occurring in the three-dimensional space.

Figure 11 is a hodogram plot of the location of the beam center. The toroidal direction
is divided to eight bins and the positions of the ions (z,,y,) in each bin are averaged. The
number ¢ in the figure is the bin number which corresponds to the z-position z = :I,/8.
The center of the circle in the figure coincides with that of the poloidal cross section and its
radius is 3.5¢/wy.. It is seen that, except a strayed and slow movement around 81-2, the
beam axis rotates in the clockwise direction toward the positive z-direction. This helical
pitch is the same as that of the initial magnetic field. The mode number of the helical

distortion of the beam axis is determined to be m/n=1/1.

The poloidal component of the magnetic field is shown in the consecutive poloidal cross-
sectional plots at ¢ = 3.274 (Figure 11). The toroidal separation between the two adjacent
cross-sections is $L.. The center of the magnetic axis (null point of the poloidal magnetic
field) is seen to shift in the poloidal cross-sections. Plotting the locations of the magnetic
axis, as we did for the beam axis, again shows a clockwise rotation of the magnetic axis
toward the z-direction. By considering the plasma geometry used in the simulation and
the fact that the helical deformation of the beam and magnetic field has occurred in a few
poloidal Alfven times, we can conclude that the present instability is the ideal (external)
kink instability [36].
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7 Summary and Concluding Remarks

7.1 Summary

A new and advanced plasma simulation method — the closely-coupled implicit method
(HIDENEK), was described in this paper which is suitable for studies of low-frequency, large
space-scale kinetic phenomena in the finite-beta, inhomogeneous plasmas. The present sim-
ulation method included the physical processes caused by the electron inertia and motions
along the magnetic field which were totally ignored in the traditional hybrid particle simula-
tions. The key of this implicit method consisted in the completely implicit, closely-coupled
field-particle (CCFP) equations which were free from the Courant condition. These equa-
tions were derived by combining the equations of motion and the Maxwell equations. In
order to incorpolate the diamagnetic and magnetization effects while eliminating both the
plasma and cyclotron frequencies of the electrons, the slightly backward time-decentered
scheme and the guiding-center approximation to the electrons were adopted. The code was

successfully implemented in the HIDENEK code from one to three-dimensions.

In the present simulation method, the electromagnetic field was solved in the real
(configuration) space for better treatment of the coupled field-particle equations. A very
efficient and accuracy-preserving approximation was introduced in Section 3 to the cou-
pled summation terms over the particle and unknown field quantities. This made the
solution of the closely-coupled field-particle equations possible under the limited comput-
ing resources while retaining the full kinetic flavor of the equations. For the solution of the
huge matrix equation thus derived, the Gaussian elimination technique was applied in the
one-dimensional simulations (Section 4 and 5), and the bi-conjugate gradient methed was
used in the three-dimensional simulation (Section 6). The numerical stability and energy
conservation of this implicit method against the implicitness parameter were also discussed

m Section 3.

As a verification and demonstration of the application area of the closely-coupled im-
plicit method, three physics applications were presented in Sections 4, 5 for one-dimension

and in Section 6 for three-dimensions. In the first two applications, the electromagnetic
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ion beam-plasma instability and the Alfven-ion-cyclotron instability were shown to be ex-
cited by tapping the free energy from either the drift motion of the ion beam or from the
anisotropy of hot ions. In both cases, the ions suffered from a significant pitch-angle scat-
tering and strong modulation in the velocity and configuration spaces. Precisely, in the first
application, the drifting beam ions were substantially slowed down and scattered in the
nonlinear stage of the instability. In the second application, the temperature anisotropy of
the hot ions was completely isotropized by the self-excited circularly polarized electromag-
netic waves; the anisotropy relaxed to (T /7)), = 2 irrespective of the initial temperature
anisotropies. In the third application to the three-dimensional plasma, the density-peaked
ion beam with the safety factor less than unity was shown to undergo a helical distortion

by the external kink instability in the ideal magnetohydrodynamic time scale.

7.2 A Design of the Simulation Parameters

For the purpose of designing the suitable simulation parameters, i* would be useful to
clarify the restrictions of the present simmulation method with respect to the time step and
the grid size. The first restriction on the time step arises from the necessity to accurately

keep track of the ion cyclotron motion,
wsAt < 0.2 (57)

The second restriction is a transit time condition which is required to resolve the structure

of the scale length A = 27 /kj mas,
k'",mnv"At < 1, (58)

where vy is the fastest speed along the magnetic field. The third restriction appears in the

combination of the time step and the grid size,
0(0.1) < yAt/Az < O(1). (59)

The lower inequality arises from an aliasing due to the coarse grid instability [5,11] and

the upper inequality from the accuracy of the expansion used in Eq.{30) and that of the
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n+1f2 (

predicted particle position X, see just below Eq.(12)). Actually, the second restriction

(58) can be similar to the upper inequality of Eq.(59).

n+1/2

A slight difference of the predicted particle position X] which is used to evaluate

n+1/2 an also be a source of numerical

the particle force from the true particle position x;
heating of the plasma. The difference of the two positions for the electrons, which can be

more relevant than the ions because of their large thermal velocity, is written as

6Xp = x;;+1/2“)_{?+1/2 (60)
1
o (%At) 2(=¢) (E"*“ i+ —At( vite —v1). (61)

The restriction may be given in the form of the accuracy condition

|5XD|
Az

* Zigadme g s - <1 @

The electric field in Eq.(62) includes both the physically evolving component and the
thermal fluctuation due to particle discreteness. If we assume a monochromatic sinusoidal

wave, Bt ~ e“mA for the physical component, we have
Ejte — B ~ dawAt B, (63)

Since wA? € 1 holds for the physically resolved modes in the simulation, {§xp| can be
negligibly small compared with the cell size if the value (v At/Az) is chosen to be of the
order of unity (eEjAt/m, < vy} However, with too few particles per cell, the deviation

due to the fluctuating electric field may be as large as

6% n t 1 —€
Broal &1 Ly )

This deviation can be small compared to unity if the acceleration due to the fluctuating

electric field is kept small such that

At |(e/m)E;] € v (65}

Summarizing the above arguments, the following procedure may be constructed for
the choice of the simulation parameters. First, we notice that there are often characteris-

tic spatial scale-lengths in the plasma phenomena, especially, in the wave and instability
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problems. The grid size is then determined from a resolution requirement. Next, if we
specify the magnetic field strength and the electron beta value, the electron thermal speed

1s determined by
i Wee

= = /B —=. (66)

c e
Referring to the conditions Eqs.(58) and (59), the range of allowable time step is determined
against the chosen space-grid size. Here, of course, the physics condition wyAt € 1 must be
satisfied where wy is the characteristic frequency of the phenomena. It is also appropriate
to follow the condition Eq.(65) in order to minimize artificial heating of the plasma, with
which the upper limit of the time step or the minimum number of simulation particles are
estimated. Although there are several restrictions on the time step to be accounted for, it
is not so difficult to find an appropriate time step. Finally, the condition Eq.(57) is referred
to in order to determine the lower limit of the mass ratio (m;/m.). At this stage, all the
parameters may have to be reshuffled to expand their allowable range of variation or to fit

the simulation run into the given computing resources.

7.3 Technical Remarks

Several remarks and future plans are mentioned here concerning the closely-coupled
imphlicit method (HIDENEK). First, it is important to use the identical formula in the equa-
tions of motion and the corresponding parts in the closely-coupled field-particle equations.
This must be kept in mind when one wishes to modify or extend the present algorithm.
Secondly, the same area-weighting scheme should be applied both in the evaluation of the
electromagnetic field at the particle position and in the assignment of the particle infor-
mations to the space grids. A violation to these rules causes poor momentum and energy

conservations and makes the simulation susceptible to numerical instabilities.

It was stated in Section 2 that the magnetic field B™** of the time level t = "2 is
used instead of B" in the equations of motion. The consistency of this choice may be
verified in the following example. Let’s consider a monochromatic Alfven wave in one-

dimension, i.e., E;, By o expli{kz —wt}]. Both the perturbed electric and magnetic fields
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are perpendicular to the wave vector that points the z-direction. A numerator of the E x B

drift term is written
E: xB' = E, xBy + E; x ((cfw) k x E;) (67)

where () stands for a time level ¢ = ¢ and non-(’) quantities are defined at ¢ = #"**, Also
the Faraday’s law B, = (c/w)k x E, has been used. A difference due to the choice of the
magnetic field’s time level occurs in the second term of Eq.(67). For t' = "¢, the second

term becomes v; = (ck/w)EZ. However, for any choice of ¢ # "**, we have

i

v, = (dk/w)(Ex-Ey)
= (ck/w)E? cos(wbt) = (ck/w)E? [1-—%(w5t)2] (68)

where 6t = t — #"**, Thus, an inproper choice of the magnetic field’s time level causes
an unphysical deviation in the magnitude of v,, which is always smaller than v,. The
difference appears as a higher-order (nonlinear) effect for the low-frequency waves but the

ponderomotive force on particles is always underestimated for ¢ £ %+,

It has been stressed that the use of the guiding-center approximation to the electron mo-
tion facilitates the simulation with a large time step compared to the plasma and cyclotron
frequencies of the electrons, At > w! and wz'. The use of the guiding-center approx-
mation to the ion species may be further useful to perform simulations with w,Af > 1
although the transit time condition Eq.(58) for the electrons may actually limit the max-
imum time step. On the other hand, since the guiding-center approximation requires the
velocity decomposition with respect to the local magnetic field, the magnetic field cannot
vanish. As noted in Section 2.1, a simple resolution of this difficulty is realized by adopting
the fully-kinetic electrons and ions for which the formulation of the equations becomes
less complicated than that described in this paper. In this case, however, a new condition
max{w.Al) < 0(0.1) limits the time step. Alternatively, combining the electron guiding-

center code which is applicable to the region away from the magnetic neutral points with

the full-kinetic code may be worth a consideration.

Representation of the equations in the non-Cartesian coordinates is favorable for study-

ing waves and stability of fusion plasmas. Since the present algorithm and numerical tech-
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niques do not depend on orthogonality peculiar to the Cartesian coordinate, the code can
be transformed to the non-Cartesian (for example, torus) coordinate in a straightforward
manner. Finally, for the purpose of studying large varieties of nonlinear processes occurring
in space and fusion plasmas, an improved energy conservation of the simulations is desired
with the closely-coupled implicit method (HIDENEK). This might be realized either by
introducing a less-damped, higher-order implicit schemes to the equations of motion or by
choosing the implicitness parameter & 7 combined with a sophisticated noise reduction

technique. Intensive research efforts will be excised to this area in the near future.
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Appendix: Procedures of the HIDENEK Simulation

The procedures that constitute one time cycle of the simulation are summarized. The
upper part of the chart shows the initial loading of the plasma particles and the electro-

magnetic field. The lower part shows one time cycle of the simulation.

[Initia,l loading of particles and ﬁelds)

Generate particles in (2,y, z, v, %, v,) space.

Accumulate j and 9.

Calculate initial electromagnetic field.

Conversion of electron velocity: (vs,vy,v,) — (4, v1,7))-

[Sta.rt of the time cycle]

Accumulate j, n, and n, of t = "*2,

Solve the CCFP equation Eq.(25) for Ertl and B7H.

Accumulate p, n; and n, of t = "+,

Solve Eq.(32) for 6 and correct B+,

Advance particles to (x™*1, v**1).

Plasma diagnosis

p
IF t < tpax, and (ctime) < (ctime) 4y,

GOTO Start of the time cycle
N

END
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Table

e Large time-and-space scales: wp Al > 1, WAt > 1, and Az > ¢/w,..
¢ Electromagnetic.

¢ Multi-dimensions in any geometry (Cartesian, cylinder, torus).

¢ Inhomogeneous plasma density and magnetic field.

e Kinetic:

[ ons: Full 3-D particle dynamics.

( B x B, VB, curvature drifts )
Resonance effects (Landau, cyclotron, bounce resonances)
Orbit effects: Finite Larmor radius effects

— 3 Diamagnetic and magnetization effects

Complicated particle trajectories

Finite speed relaxation due to electron inertia

Electrons: Parallel direction — 1-D motion with (—uV B) force.

Perpendicular direction — Guiding-center drift motion.

Y

included.

Table 1. Characteristics of the HIDENEK Simulation Code
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Figure Captions

Figure 1. The time histories of (a) the perturbed magnetic field energy, (b){(c) the kinetic
energies of the beam and background ions, respectively, and (d) the parallel kinetic
energy of the electrons for the electromagnetic ion beam-plasma instability with

vafva = 10 and nyfng = 1.5 x 1072

Figure 2. The time histories of (a) the average drift speed of the beam ions, and (b) the

deviation of the system total energy in percent for the run shown in Figure 1.

Figure 3. The electromagnetic field B,, B,, E, and E, from top to bottom, respectively,

at wet = 80 of the electromagnetic ion beam-plasma instability.

Figure 4. The distribution of the beam ions in the (v,,v,) and (z,v,) spaces in the left
and right columns, respectively, for (a) wat = 0, (b) w.t = 80, and (c) w,t = 200.

Figure 5. The time histories of (a) the perturbed magnetic field energy, (b) the electric
field energy, (c) the temperature anisotropy (7' /7)., and (d) the deviation of the total
energy (in percent) for the Alfven-ion-cyclotron instability of the initial anisotropy

(T1/Tjt)io = 20.

Figure 6. The distribution of the ions in the (v, v.), (2,) and (z,¢) spaces from top to
bottom, respectively, for (a) wut = 0, (b) wet = 21, and (c) wst = 42 [ = tan™ (v, /v,)].

Figure 7. The spatial profiles of the ion and electron densities, and the intensity of the

magnetic field [Bf® at (a) w.t = 21, and (b) w.t = 42.

Figure 8. The time histories of (a) the magnetic field energy, (b) the ion kinetic energy,
(c) the electron kinetic energy defined by W, = %me@ﬁ + uB, and (d) the deviation of the
system total energy (the constant part (Bp)® is excluded in &,5¢).

Figure 9. The cross-sections (at y = ZL,) of the current and charge densities in the

upper and lower panels, respectively, at (a) ¢ = 0.2774 and (b) ¢ = 3.27,.
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Figure 10. The bird’s-eye-view scatter plots in the {z, v, z) space at (a) t = 0.2774 and
(b)(c) ¢ = 3.274. The plots are for the ions except for the electrons in (c). The helical
perturbation has the mode number m/n=1/1. (Note the length in the z-direction has

been squeezed).

Figure 11. A hodogram plot of the center of the beam axis at ¢ = 3.274. The number ¢

corresponds to the toroidal position z = if,/8.

Figure 12. The poloidal magnetic field (B, B,) in the consecutive poloidal cross sections
(toroidal separation of L, /4) at t = 3.27,4. The maximum amplitude of the poloidal

magunetic field is 0.21 in the simulation unit.
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