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ABSTRACT

Bounce resonance heating and associated radial transport in a magnetic
mirror are studied. A general expression for the absorbed power and radial
particle flux due to bounce resonance is obtained by use of a gyrokinetic
equation with the eikonal representation for waves. It is shown that the power
absorption yields the outward (inward) particle flux with positive (negative)
azimuthal mode number of RF wave fields and the power emission meaning
instabilities yields the reverse particle flux with the same mode number for the

ion. The particle flux for the electron is opposite to that for the ion.



Electron heating by wave fields in the ion cyclotron range of frequencies
(ICRF) has been observed in mirror experiments.1-3) In these experiments, the
heating mechanism of the electron is considered not to be electron drag from
the ion, but to be direct heating. Bounce resonance heating is the dominant
candidate, because the electron bounce frequency is usually comparabie to the
ton cyclotron frequency in mirrors and therefore ICRF waves can resonate to
the electron bounce motion. We also see that radial transports generally arise
associated with RF heating.4-7)

In this Letter, we study bounce resonance heating and associated radial
transport in a magnetic mirror. We derive a general expression of the absorbed
power due to the bounce resonance by using the gyrokinetic equation with the
eikonal approximation for wave fields applicable to both the electron and ion.
By comparing the expression of the absorbed power with the expression of
radial particle flux induced by RF wave fields via the bounce resonance
obtained previously in ref.6, we find a simple but useful exact relation between
the absorbed power and radial particle flux. The relation shows that the power
absorption for the ion yields the outward (inward) particle flux with positive
(negative) azimuthal mode number of RF fields and the power emission
meaning Instabilities yields the reverse particle flux with the same mode
number. The particle flux for the electron is opposite to that for the ion.

We now derive the expression of the absorbed power due to the bounce
resonance in an axisymumetric magnetic mirror. The magnetic field is expressed
as B=Bb=Vyx V0 in the magnetic flux coordinates ( i, 8, s), where y is
the flux coordinate, 8 is an anglelike coordinate and s is the distance along a
field line. We consider RF fields described by the eikonal representation for
simplicity and then a perturbed quantity X(w,8,s,r) is expressed as

X (s)expliS(y,0)—imt], where the wave frequency ® is assumed to be



much smaller than the cyclotron frequency. The RF electric and magnetic

fields, £ and B, are expressed in terms of the scalar and vector potentials g?)
and A=Ab+Vx b as

E=-Vj+i(w/c)A,
B=VxA=tab+iAkxb=Bb+B,, (1)

where ¢ is the light speed and k, =VS=§,Vy +5,V0, Sy =m being the
azimuthal mode number of RF fields. We assumed [k, |>> IX_IBX / 831 in

eq.(1).
The starting point is the linearized gyrokinetic equation, since the wave
frequency is much smaller than the cyclotron frequency. The perturbed

distribution function f for a given specics is then given by8:9)
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where £(=v2/2+ q® /M) is the particle energy per unit mass, {(= vf /2B)
the magnetic moment per unit mass, L=v, -(k, Xb)/ @, z=k v, /.,
o{=gB/Mc) the cyclotron frequency, q the charge, M the mass, v the velocity,
® the equilibrium electrostatic potential, J,(z) the Bessel function of order n

and f, the unperturbed distribution function. The function § is given by
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where @y =wg+@,+®, and . are drift frequencies defined by,

respectively,

wg =(c/B)(k, xb)- VO,
w, =0V} /2w,)(k; Xb)-VIn B, (4)
@, = [ o)k, xb) K,

o« =—(k, Xb)-Vfy /(w9 / 9€),

and x = (b V)b is the curvature of a magnetic field line. Hereafter we neglect
@4 and . in eq.(3) by assuming that the wave frequency ® is much larger
than 0y and @-.

If we introduce a timelike variable defined by 7= j ds/ fv“l, the function

£ can be expressed by an expansion in the harmonics of the bounce motion as
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where @y is the bounce frequency and H(A) is given by

ﬁ(l):[dr[q's—%ﬁ" +%‘-1§;,]exp(—i,1w3r)/jdfz, N



with use of the approximation of J,(z)=1and J,(z)=z/2.

We now calculate the absorbed power due to the bounce resonance.

Since the perturbed current density jis expressed as j =q_{1{fdv, a line-

integrated absorbed power can be given by

E -if >}, (8)

where { is the gyrophase angle between v, and k,, <---> denotes time

averaging over the wave oscillation period and Re{---} represents the real part

of a complex quantity. Here E - v is expressed as

E.V:EIW"+(kl"’i)(2ki'Ei)+b'(kl><vl)b‘(kaEl) .
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If we mtroduce a new variable ¥ defined by

PR (10)

and use eq.(1) and gl =(c/ w)b-(kaE |} obtainable from Maxwell's

equation, eq.(9) is reduced to

Eove-dGogys v B on Gk xbf
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Substituting eqs.(2) and (11) into (8) and performing the integral in the
gyrophase angle {, we can obtain
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and used that the first and second terms of f given by eq.(2) do not contribute
the Joule heating of E*- j since they are reactive parts of the distribution
function.

When we perform the integral in 7 after the expansion of the perturbed

quantities in the bounce harmonics, we obtain
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where 7p =27/ @y, 8[x] the 6-function and H(A) is rewritten as
. ~ . My . .
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by use of the resonance condition ® = Awg. As seen from eqs.(9) and (11),

¢—7% in H(L) is related to the perturbed parallel electric field £, by



E,=-ik(é- 7). Equation (14) is a general expression of the absorbed

power due to the bounce resonance. We can obtain a more explicit expression
for the absorbed power if we give an explicit model for the axial profiles of the
magnetic field and electrostatic potential to find the bounce frequency and also
the particle trajectory, which will be reported in a separate paper.

Hereafter, we discuss a relation between the absorbed power P due to
the bounce resonance and the radial particle flux induced by RF fields which
we have obtained in ref.6. The line-integrated radial particle flux in ref.6 is

defined by

szj%F stZJ.BdsdydC
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where V| is the cross-field particle drift driven by RF fields. Though the radial
particle flux of eq.(15) is obtained for the electron in ref.6, we can easily obtain
that for the ion in the same manner. Then the expression of the radial particle
flux induced by RF fields for a given species is given by

27r3q

r,=m=-Ljdedp(- %)ZAV{(A)( Slo— Awg) . (16)

Equation (16) just coincides with that obtained in ref.6 for the electron. By

comparing eq.(14) with eq.(16), we can obtain a simple but useful exact relation
between P and I” w as

r ==tp. a7



We briefly discuss about the physics of the equality (17). The power
absorption (or, emission) due to wave-particle resonances causes the change in
a wave momentum. From the momentum conservation of a plasma, this
change in the wave momentum is transferred to plasma particles to change the
particle momentum. For RF wave fields with azimuthal wave number

kg =m/r, the force yielding the momentum input in a spatially uniform

plasma is a azimuthal force and given by10.11)

We have found that the above relation holds for the bounce resonance
absorption in a non-uniform mirror plasma. Then the F X B drift is a radial

drift and yields the radial particle flux given by eq.(17). That is,

cFg _me

I =rBI' =rB
v ’ gB qw

P,

since the flux ¥ is given by y = r’B /2 foran axisymmetric plasma.

In conclusion, we have studied bounce resonance heating and the
associated radial transport in mirror plasmas. We have derived a general
expression of the absorbed power and have found that it is closely related to
the radial particle flux induced by RF wave fields. We see from eq.(17) that the
power absorption (£>0) for the ion yields the outward (inward) particle flux
with a positive (negative) azimuthal mode number of RF wave fields and the
direction of the particle flux is reverse for the electron. On the other hand, the
direction of the particle flux for the power emission (P<0) meaning instabilities

1s opposite to that for the power absorption with the same mode number. We



believe that the present analyses are also useful in studying the heating process
and the associated radial transport of trapped particles in toroidal plasmas.
Finally, we are grateful to members of the Plasma Research Center,
University of Tsukuba, for useful discussions. This work was partly supported
by a Grant-in-Aid for Scientific Research from the Ministry of Education,

Science and Culture.
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