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Abstract

The electrostatic trapped electron instabilities have
been investigated by numerically solving the local single
energy integral form dispersion relation. With the electron
temperature gradient, the electron collision effect
destabilizes the dissipative trapped electron mode (DTEM).
For collisionless electrons, the energy dependent curvature
drift effect strongly destabilizes the collisionless
trapped electron mode. The growth rate is, however, reduced
by a small collision effect. The anomaluous transport due
to these trapped electron modes is discussed.
Keywords: Electrostatic local dispersion relation for
trapped electrons, single energy integral form, numerical
calculation, dissipative trapped electron mode, curvature
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§1. Introduction

Trapped particle instabilities have been studied by many authors
in connection with the anamalous plasma transportl} “6) . 1t ig well
known that the electron collision effect excites so called
dissipative trapped electron mode (DTEM). In the simple model of
the constant collision frequency, the collision stabilizes by the
colligion damping effect. The DTEM is destabilized, combined with
the electron temperature gradient, when the energy dependence of
the collision frequency is taken into account. This situation is
similar to the ni-mode which is excited by taking into account the
energy dependence of the curvature drift frequency-mrf)

In addition to the collision effect, if we take into account the
energy dependent electron curvature drift effect, the trapped
electron mode may be more destabilized. Due to this energy
dependence, the analytical solution to the dispersion relation is
at best limited to perticular asymptotic cases. For arbitrary
parameter ranges, the dispersicn relation may only be solved by
numerical calculations.

The purpose of this report is to examine the effects of electron
temperature gradient energy dependent electron collision, and
curvature drift frequency for trapped electron modes by
numerically solving the electrostatic local dispersion relation,
and compare with usual analytical results.

We assume a simple model for ion dymamics neglecting the effectsg
of trapped ions, finite Larmor radius, curvature drift and transit
frequency. By solving the complex integral equation by a comformal
mapping method, the growth rate y is found to be much larger than
expected. Due to the combined effects of the electron temperature
gradient and curvature drift, y can even be larger than the
electron diamagnetic drift frequency w*g.

In actual situations, the growth rate may be smaller by varicus
stabilizing effects such as the finite ion Larmor radius effect,
transit particle effect and finite f-effect. Although our model may



be too simple to be realistic, we can see, at least, what is the

most important source for the trapped electron instabilities.

§2. Electrostatic Dispersion Relation
We start with the gyrokinetic solution for the perturbed ion
distribution
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The perturbed distribution for trapped elctrons is given by

N 95 -
fe=--,1;-—{1—f~———?-e——}FMe (2)

el W WpetlVoer

where all notations are standard”’)

sop=up (G2/2+V2), wp=2ene*/T,
=To/T3, en=Lp/Lly, 1/Lp=-dlm/dr, 1/Lp=-dlnB/dr k=g (14 (V2+v2-
3/2)) /7, n=¢lnT/dlnn, m*e=kycTe/eBLn, FM=(Ivth2)“3/2exp(-E/T), and
vef£=vo/t with e=r/R for tokamak, and eep(helical inhcmogeniety
factor) for the helically symmetric system. We neglect the passing
electron distribution, because it is of the order w.we which must
be much smaller than that of trapped elctrons, where wr is the
electron transit freguency we=KyVy .

Tf we neglect the curvature drift frequency and also finite Larmor
radius effect for iomn in eq. (1), the perturebed ion density is
approximated by®) :

;lig_ﬂj_eé‘im {3}

where &=w+wg with wp=vgkg, vg=CEy/B is the polcidal rotation
velocity due to the radial electric field Ey. Integrating eq.(2)
over the velocity, we have the pertubed electron density

d
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From the quasi-neutrality condition, we have the 1local

electrostatic dispersion relatiom:
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The velocty integral in eq.(5) can be rewritten in the form of

double integral:
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Equation (6) may only be sclved by mmerical calcultions. The double
intgration is, however, time consuming particulary near the
resonance condition. We approximate?! the curvature arift frequency
by wp=2en (v2/2+vZ)¥2en (v2+v2)=2enE. Equation (6) in this case can be
rewritten in the form of single integral with respect to the

normalized energy E:
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For the sake of simplicity, we express the normalized frequency
@@*e as w. To our trapped electron mode, the electron temperature
gradient is essential. The importance of e can be seen by setting
ne=0 in eq.(6) or (7). In this case, these equations yield an exact
solution «=1 and anothor damping branch, i.e., without electron
temperature gradient all branches are stabilized.

We will solve eq.(7) numerically by making use of a conformal
mapping method, i.e., by mapping certain orthognal curves in the
canplex w-plane onto the complex Deg-plane and seek the point in the
camplex w-plane until Deg tends to the origin in the complex Deg-

plane.




§3. Dissipative Trapped Electron Mode

First we consider the trapped electron instability induced by the
electron collision effect. If we assume the curvature drift and
collision frequencies, wp and vgeg, are respectvely constants. In
this case, eq.(7) can be written by

1‘}'"—‘[_;;“.‘_—{(03‘1*2719)5“1@3}:0 (8)
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where the moment integral Iy has been defined by
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Since Ig=1 and I;=3/2, n, term is exactly cancelled out and eq. (8)
vields the solution

w=1 or w=26n_-.]-'1-e—‘-f-§- (lo)
t-yer

Both eigenvalues indicate the stable branches. This means that as
long as wp and vesg are constants, we have no instabilty.

If we introduce the energy dependence of these frequencies, the
trapped particle instabilities are excited. Let us solve eq.(7) in
the collisional regime: Vefe??Ws. Fxpanding the integrand in eq. (7}

in powers of w/vgee, We have
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To the first order of w/vyse, the solution to eqg.(11) is obtained by
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As compared to the usual growth rate ye3/ 20.%na/vet)?) for the
DTEM, the growth rate given by eq.(12) is larger by a numerical
factor 6/ #1/2, The effect of curvature drift frequency wp is the

gecond order to "’/"eff' and may be negiligible in the collisional



regime. In the limit, vg=>«, the eigenvalue « tends to the stable
point 1. In the oppesite collisionless limit, ve~>0, the eigenvalue
@ also tends to the same stable point 1, which can be seen from
eq.(10).

For arbitrary collision fregquencies, egq.(7) is numerically solved
by the conformal mapping method. Variation of the discrete
eigenvalue for the case of wp=0 is presented in Fig.l for various
values of vg and ng. Since the eigenvalue « tends to the same limit
1 for ve—0 and vg—>~, the eigenvalue trajectory for each ne forms a
closed contour. As ng is reduced, the contour shrinks and fimally
tends to a stable point «=1, i.e., the electron temperature gradient
is essential to the DTEM as mentioned in the above.

The normalized frequency and growth rate are also plotted versus
the normalized collision frequency ve for different values of e in
Fig.2. The asymptotic solution {(12) presented by the broken curve
is also campared in Fig.2. As seen in Figs. 1 and 2, the growth rate
y sharply increases in the weakly collisional regime, ve<l. As vg
increases, however, y suffers collision damping and decreases. When
the curvature drift effect is taken into account, the trapped
electron mode is strongly destabilized as seen by the case of #,=0.1
in Fig.2. This branch seems to be strongly destabilized particularly

in the collisionless limit.

§4. Collisionless Trapped Electron Mode

We now consider the effect of curvature drift on the trapped
electron mode in the collisionless limit. In this case, eq. (7} can
be rewritten in the form

- _l_ n_G_ E’,,I'_ ne JI_'&'e EdE
Dea=1-~ Js?kn zﬁ-{ -0-g8e }J' (13)
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If we change the variable by E=x2, the integral in eq.(13) can be

expressed in terms of the usual plasma dispersion function Z:
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Introducing eg. (14) into eq.{13), we have
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The complex function (wip)l/2 has the branch points at «=0 and at
infinity. The function Z is discontinuocus across the branch cut
[0,] on the positive real axis. This branch cut corresponds to the
continuous eigenvalue of the original gyrokinetic eguation in the
collisionless case.

When wep>>1l, applying the asymptotic formula 2z ({{)=-
(1+1/272+3/47%) /L, we find the eigenvalue «=1 in the limit «p-—>0.
Since the quantity (wwp)l/2 is approximatly unity, and also the
real and imaginary parts of « are nearly the same, RewsImw, in
general, we have no available asymptotic formula. Eguation (15) is,
therefore, not so useful to derive approximate analytical sclution
for the eigenvalue. We solve directly eq.(7) numerically by the
conformal mapping method.

Variation of the discrete eigenvalue, thé solution of eq. (7}, is
presented in Fig.3 for various values of ng and &,. As seen in
Fig.3, the normalized growth rate y increases as ng increases. For
each ne, as &n increases, the trajectory of the eigenvalue tends to
the continuum, i.e., the positive real axis at which the mode
becomes marginal. Figures 1 and 3 also indicate that the trapped
electron modes are essentially the resonant mode at the electron
diamagnetic drift fregquency, «wxa-

Let us analytically evaluate the critical value of ng above which
the trapped particle mode becomes unstable. At the marginal state,
y=0, applying the formula: {(x+i0) }=Px 1-ind(x) to the integrand of
eqg.{13), from the real and imaginary parts, we have two equations
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From eqg. (17), we have «=(1-3ng/2)/(1-ng/wp). Introducing this

relation into eqg. (16), we have w=o:D/(wD—z-:l/2ne) and the relation

between n, and &, in the form

i 3
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In the derivation of eg. (18), we assumes no approximation, i.e., the
critical condition (18) is exact. The boundary in the (ep,ne)-plane
given by eg.(18) is shown in Fig.4. The evaluation of the critical
value by mmmerical method has the difficulty due to the singularity.
The numerical integration for the singular function must be very
careful. The boundary values cbtained by numerical calculations are
close to the curve shown in Fig.4. For the collisionless case, the
unstable region below the line given by Eg.(18) is limited in the
region £5>0. .

The critical boudary curve ig also calculated numerically for the
case with the collision effect. As seen in Fig.4, when the collision
effect(@e=l) is introduced, the stable regiom in the (ne,&y)-plane
ig enlarged. How the collision effect stabilizes the trapped
electron mode can also be seen by the eigernvaluve shown by the dotted
curve in Fig. 3. As compared with the eigenvalue of ng=1, the dotted
trajectory with the collision effect, 3e=l, is much reduced.

The weak collision effect exites the DTEM. On the other hand, the
same weak collision effect strongly stabilizes the collisionless
trapped electron mode induced by the curvature drift. This situation
can be seen in Fig.5, where the normalized growth rates for e,=0
(DTEM) and £,=0.2 are plotted versus Ge for comparison.




§5. Anomalous Electren Diffusion
We proceed to the derivation of electron diffusion coefficient
induced by the trapped electron modes. Let us consider the cross

field quasi-linear electron flux

T =Id3v<vxfe> (19)
where the angular brackets means the ensemble average. Introducing

; v
Fourier representaticn of C"X-—-icketb/B and eg.{2) into eq. (19), we

have
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The flux due to the discrete trapped electron modes must be
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evaluated by introducing the discrete eigenvalue w=wy+iy given by
the dispersicn relation (5). From eq.(5), the imaginary part of the
integral in eq. (20) can be expressed by the discrete eigenvalue in

the form?)
deV_ (ﬂ‘w*::pe By |- W oY (21)
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x
which is exact for arbitrary up and veff.

If we apply the mixing length assumption: le&felz & (k_-LLn)'2 in
eq. (20), and bearing in mind the relation: r=-DJ_dn/dr, we have the
electron diffusion coefficient fram egs. (20) and (21)

DL =£12g____";-:_ej'_’ ' (22)
k_L wr+yd
When %o, and y<< w,, eg.{22) reduces to the usual result

D =— (23)

X

L
Ag we have seen in Fig.3, this assumption does not hold in general,

i.e., the usual formmla (23) is valid only in the limited parameter
region. As seen in Fig.3, when np>l, and ey =0.1, the magnitude of
the growth rate v becomes nearly the game as that of the real
frequency, and the assumpticn y<<w: is broken down.

As long as the test particle diffusion model and the mixing length

ansatz are applied, the diffusion coefficeient due to the continuum



contribution has been obtained in the similar form®).
For the DTEM, applying the growth rate given by eg.{12) to

eq. {23}, we have
3
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If we introduce the gryro-Bchm coefficient by
=L (25)
B =
Ig
for k = ky, eq.(24) can be rewitten in the form
6ver’vy
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The diffusion coefficient (24) has the scaling: D e T7/2¢3/2p-2p-1
/Iplp, 1.e., D has a strong temperature dependence.

If we assume k pjsconstant as experimentally observedi®), eq.(22)
can alsc by expressed in terms of Dgp :
Wre¥ T

(27}
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For the collisionless plasma, the diffusion coefficient D, normalized
by Dep is plotted versus g in Fig.6. As seen in Fig.6, the quantity
D, /Dgp increses as n, increases, and is sharply peaked at g = 0.05
which is due to the behavior of the growth rate y versus .

As shown in Refs. (1} and (2}, and eq. {24}, the asymptotic formula
for the growth rate for the DTEM is proportional to the factor sng.
The importance of the electron temperature gradient effect no has
alsc been seen in the numerical results in Figs.l and 3, i.e.,
without ne the trapped electron instability disappears. Recently the
diffusion coefficient induced by the DTEM without the ng-effect has
been employed, among many other models, for interpretations of
experimental observationgll)1Z), gince the electron temperature
gradient is an esgential source for the trapped electron instability
as pointed out in the above, the effect of ng should be taken into

account.



§6. Conclusion

Neglecting the finite Larmor radius effect and transit frequency
for ioms, the trapped electron instabilities induced by the electron
temperature gradient have been investigated Dby numerically
calculating the electrostatic local dispersion relation. 1In our
model, the negative electron temperature gradient is essential to
excites the dissipative and collisionless trapped electron modes.
When ne=0, all these instabilities are stabilized. Even when ng %0,
if the collision frequency and curvature drift frequency are
independent of velocity, the trapped electron modes are stable, as
in the case of nj-mode. The DTEM is, therefore, becomes unstable
when ngk0 and verfe is velocity dependent. In the highly collisional
regime, vg>>ws«, the asymptotic formula for the growth rate agrees
with the numerical results calculated by a confomal mapping method.

In the collisionless regime, the combination of electron
temperature gradient and curvature drift effects make the trapped
electron mode strongly unstable. The freguency wy is positive, i.e.,
in the electron diamagnetic drift direction, and «psw«. The growth
rate y also becomes comparable to or even larger than the electron
drift frequency w+, i.e., v is even larger than that of the nj-mode.
In this regime, o,%y%w., the asvmptotic expansion formula for the
plasma dispersion function is not available, and we bhave no
analytical expression for the dispersion relation. In the limit, v-
>0, of the marginal state, however, the exact analytical expression
as given by eq.{(18) for the stability boundary has been obtained in
the collisionless case. The collision effect destabilizes the TEM in
the small ng regime, while it stabilizes the TEM in the larger ne
regime as seen in Fig.4.

The cross field electron flux which is induced by the discrete TEM
has been calculated consistently with the dispersion relation, and
the diffusion coefficient has been evaluated in term of the gyro-
Bohm coefficient as given by eg.{24). The electron diffusion
coefficient normalized by Dgp increases as fne increases, and is

sharply peaked at ep=0.1 as e varies. At the peak value D is much



larger than Dgp as shown in Fig.é6.

In this study & simple model has been employed to see what is the
important source of the trapped electron instabilty. If we introduce
more detail of ion dynamics such as the finite Larmor radius effect,
the growth rate of the TEM may be reducedl3).
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Figures Captions

Fig.l: Variation of nornalized discrete time eigenvalue for various
values of $e="e/w* and 1 in the complex w-plane.

Fig.2: Variaticns of normalized frequency and growth rate for
dissipative trapped electron mode vursus normalized collision
frequency (z\e for ng=1,

Fig.3: Variation of normalized discrete eigenvalue for collisionless
trapped electron mode for various values of & and ng. The
discrete eigenvalue for DTEM is presented by the broken curve
for comparison.

Fig.4: Critical boundary curves for Ce=0 and Ce=1 in {ng.fp)-plane.

Fig.5: Comparison of normalizes growth rates for e;=0(DTEM) and
g=0.2 as functions of normalized collision freguency ge-

Fig.6: Variation of electron diffusion coefficient normalized by
gyroBohm coefficient versus ey for varicus values of ng for

collisionless plasma.
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