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A general theory with use of auto-correlations for distributions is presented to
derive that realization of coherent structures in general dissipative dynamic systems
is equivalent to that of self-organized states with the minimum dissipation rate for
instantaneously contained energy. Attractors of dissipative structure are shown to be
given by eigenfunctions for dissipative dynamic operators of the dynamic system and
to constitute the self-organized and self-similar decay phase. Three typical exam-
ples applied to incompressible viscous fiuids, to incompressible viscous and resistive
magnetohydrodynamic (MHD} fluids and to compressible resistive MHD plasmas are
presented to lead to attractors in the three dissipative fluids and to describe a com-

mon physical picture of self-organization and bifurcation of the dissipative structure.
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I.INTRODUCTION

” Dissipative structures” realized in dissipating nonlinear dynamical systems have
attracted much attention in many research fields. They include various self-organized
structures in thermodynamic systems [1, 2], the force-free fields of cosmic magnetism
[3], the self-organized relaxed state of the magnetized fusion plasmas such as in the
reversed field pinch (RFP) experiment [4-6], in the spheromak experiment {7, 8] and
in the simple toroidal Z pinch experiment [9], and further the flow structures in in-
compressible viscous fluids such as the two dimensional (2-D) flow patterns after grid
turbulence {10] and the helical flow patterns which follow turbulent puffs [11]. We can
see some commnon mathematical structure among the self-organized relaxed states of
the dissipative structure and also among the proposed theories themselves to explain
those dissipative structures {3, 12-18]. The study of the common universal mathe-
matical structures embedded in dissipative nonlinear dynamic systems and leading
to those dissipative structures is an area of deep interest. Using a thought analysis
for the method of science [19-21], the present author has proposed recently a novel
general theory which clarifies that attractors of the dissipative structure are given by
eigenfunctions for dissipative dynamic operators in dynamic systems of interest [22].
Here, the word ”thought analysis” means that we investigate logical structures, ideas
or theories used in the objects being studied, and try to find some key elements for
improvement and/or some other new theories which involve generality, by using such
as a kind of thought experiments and mathematically reversible processes [18-21].

In this paper, we refine more the previous general theory [22] in Section II, by
clarifying that realization of coherent structures in time evolution is equivalent to
that of self-organized states with the minimum dissipation rate for instantaneously

contained energy. We present three typical examples applied to incompressible viscous




fluids in Section I1I, to incompressible viscous and resistive magnetohydrodynamic
(MHD) fluids such as liquid metals in Section IV and to compressible resistive MHD
plasmas in Section V in oreder to lead to attractors of the dissipative structure in
these dissipative fluids and to describe a common physical picture of self-organization

and bifurcation of the dissipative structure.

II. GENERAL THEORY OF SELF — ORGANIZATION
AND DISSIPATIVE STRUCTURE

We present here the more refined general theory for the self-organization and
the dissipative structure than the previous report [22]. Quantities with n elements
in dynamic systems of interest shall be expressed as q(¢,x) = {@:(¢, %), g:{t,x), -- -,
gn(t,x)}. Here, ¢ is time, x denotes m-dimensional space variables, and q represents
a set of physical quantities having n elements, some of which are vectors such as the
velocity u, the magnetic field B, the current density j, - - -, and others are scalors such

as the mass density, the energy density, the specific entropy and so on. We consider

a general dissipative nonlinear dynamic system which may be described by

g N D
% = I + I7a). (1

where L¥[q] and L?[q] denote respectively nondissipative and dissipative, linear or
nonlinear dynamic operators, such as ¢; = u, L¥[q] = —Vp/p —Vi#/2 + u x w,
and LP[q] = (v/p)V?u in the Navier-Siokes equation for incompressible viscous fluid
dynamics with the coefficient of viscosity v. I this dynamic system has no dissi-
pative term of L”[q] and also has no external input, global auto-correlations W,(¢)
= [g.(t,%)q:(t,x)dV = [{a(t, x)]?dV across the space volume of the system, which
usually represent the system’s total energy, are conserved because there is no dis-

sipation by the nondissipative operator L¥[q]. In this case, we accordingly obtain



OW,, /0t =2 fq:(8g,/0t)AV = 2 [ ¢;L¥[q] dV = 0, and therefore the definition of the

nondissipative operator L{q] is written by:

[ar¥laav = 0. (2)

Using eq.{2), the dissipation rate of W,;(t) in the dissipative dynamic system of eq.(1)

is written as follows:
W,, ;
0 (t 2[ aQ(tx)dV_Q/ LP[qdV (3)

When the dynamic system has some unstable regions, the nondissipative dynamic
operator L¥[q] may become dominant and lead to the rapid growth of perturbations
there and further to turbulent phases. { In some cases, a nonlinearity of Z[q] may
lead to nonlinear saturation of perturbations. } This may yield spectrum transfers
or spectrum spreadings toward the higher or wider wavenumber region in g, distribu-
tions, as in the normal energy cascade and the inverse cascade shown by 3-D MHD
simulations in [23-25] or in the turbulent region of the turbulent puffs in incompress-
ible viscous fluids shown in Fig.4 of [11]. When the higher wavenumber becomes a
large fraction of the spectrum, the dissipative dynamic operator L?[q] may become
dominant to yield higher dissipations for the higher wavenumber components of W;.
In this rapid dissipation phase, which is far from equilibrium, the unstable regions
‘in the dynamic system are considered to vanish to produce a stable configuration
again. Since this newly seif-organized relaxed state is identified by realization of its
coherent structure, we notice and find the following definition of the configuration
of the self-organized relaxed state, by using auto-correlations, ¢,{{g, X)q:({g + At, %),
between the time of relaxed state, tg, and slightly later time, {5 + Af, with a small

Af:

[ a(tr, X)a,(tg + AL, x)dV
f qiltr, X)g:(tr, x)dV

4

min | — 1| state. (4)



Substituting the Taylor expansion of g,{(fg + AL, X) = g(tp,x) + [Oq:{lr, x)/Ot]AL
+ (1/2)[8%q:(tr, x)/¢7](At)* + -+ - into eq.(4), and taking account of the arbitrary
smallness of At, we obtain the following equivalent definition of the configuration of

the self-organized relaxed state from the first order of At in eq.(4):

 4:(tr, x)[0g:(tr, x)/Ot|dV
fqiltn, ¥)au(tr, x)dV

Using the term of W,,(t), this equivalent definition is rewritten as follows:

min |

| state. (5)

W, (tg) /01
Wu (tR)

min | | state . (6)

This definition leads to the following two equivalent definitions for the configuration

of the self-organized relaxed state :

un

fl

min | | state for a given value of W,; at ¢ = t5. (7)

: oWy
maz W state for a given value of |

| at ¢

338 (8)

These two equivalent definitions belong to typical problems of variational calculus
with respect {o the spatial variable x to find the spatial profiles of ¢;(tg, x), and they
are known to be equivalent to each other by the reciprocity of the vanational calculus.

We use the notation q*(W;;, x) or simply ¢; for the profiles of g; that satisfy eq.(7).
Since aW,,/ a1 usually has a negative value, the mathematical expressions for eq.(7)

are written as follows, defining a functional F* with use of a Lagrange multiplier a:

oWy

= — oW,

F o aW;, | 9
§F =0, (10)
8F > 0, (11)



where § F and 6°F are the first and the second variations of F with respect to the
variation 6g(x) only for the spatial variable x. Substituting eq.(3) into egs.(9) - (11),

we obtain:

§F = -2 [{84(1P[a] + aq) + a.5LF[a] } 4V = 0. (12)

$F = —2 / 59.6L7la] + 3 69.) 4V > 0. (13)
We now impose the following self-adjoint property upon the operators L?[q] :

/ ¢ SLPIqdV = f 54:LP[qdV + }( P-dS, (14)

where § P - dS denotes the surface integral term which comes out as from the Gauss
theorem. The self-adjoint property of eq.{14) is satisfied by dissipative dynamic op-
erators such as (v/p)V?u in the Navier-Stokes equation, and the Ohm loss term of
~V x (nj) in the magnetic field equation of resistive MHD plasmas with resistivity
n. The surface integral term of § P - dS sometimes vanishes because of the bound-
ary condition, as in the case of the ideally conducting wall. Using the self-adjoint

property of eq.(14), we obtain the following from eq.{12):
5F = —2/5q,-(2L?[q]+ag,-)dV _ sz-ds — 0. (15)

We then obtain the Euler-Lagrange equations from the volume integral term in eq.(15)

for arbitrary variations of ég; as follows:

* 44 *
Llq] = -5a" (16)
We find from eq.(16) that the profiles of ¢7 aze given by the eigenfunctions for the dis-
sipative dynamic operators L2[q7], and therefore have a feature uniquely determined

by the operators LP[q"] themselves. As a boundary value problem, we may assume

that eq.(16) can be solved for given boundary values of ¢;. The value of the Lagrange
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multiplier « is determined by using the given value of W, for the global constraint,
as is common practice in the variational calculus. Since we cannot, a priori, predict
the value of W;; at the state with the minimum dissipation rate for every dissipative
dynamic system, we have to measure the value of W; at such a state in order to
determine the value of . However, we can predict the type of the profile g7 for every
dissipative dynamic system by using eq.(16), if the operator L2[q"] is given.

Substituting the eigenfunctions ¢* into eq.(3), and using eq.(16), we obtain the
following:

3“7.;* _ *\2 _ * -
“ _—a/(q,)dv_-aw,,, a7

Wi = Wi = ¢ [ PV = [l e FPAV,  (18)

" = gr'(x) e, (19)
8g;* a
= = —— ¢ = P, 20
24 = 1Pla] (20)

where ¢;5*(x) denotes the eigensolution for eq.(16) which is supposed to be realized
at the state with the minimum dissipation rate during the time evolution of the
dynamical system of interest. Substituting the eigenfunctions ¢} into eq.(1), and

comparing with eq.(20), we obtain the following equilibrium equations at ¢ = ¢z:
equilibrium equations  L¥{q'] = 0. (21)

We find from eqs.(19) - (21) that the eigenfunctions ¢} for the dissipative dynamic
operators L?[q*] constitute the self-organized and self-similar decay phase with the
minimum dissipation rate and with the equilibrium state of eq.(21) in the time evolu-
tion of the present dynamic system. We see from eq.{17) that the factor « of eq.(16),

the Lagrange multiplier, is equal to the decay constant of Wy; at the self-organized and
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self-similar decay phase. Since the present dynamic system evolves basically by eq.(1),
the dissipation by LZ[q"] of eq.(16) during the self-similar decay couples with L¥[q]
and the boundary wall conditions to cause gradual deviation from self-similar decay.
This gradual deviation may yield some new unstable region in the dynamic system.
When some external input is applied in order to recover the dissipation of W, the
present dynamic system is considered to return repeatedly close to the self-organized
and self-similar decay phase. Observation of the time evolution of the system of in-
terest for long periods reveals a physical picture in which the system appears to be
repeatedly attracted towards and trapped in the self-organized and self-similar decay
phase of eq.{19). The system stays in this phase for the longest time during each
cycle of the time evolution because this is where it has the minimum dissipation rate.
In this sense, the eigenfunctions ¢* of eq.(16) for the dissipative dynamic operators
LP[q"] are "the attractors of the dissipative structure” introduced by Prigogine [1,2].

Using eq.(13), we next discuss the mode transition point or bifurcation point of the
self-organized dissipative structure. We consider the following associated eigenvalue

problem for critical perturbations §¢; that make §2F in eq.(13) vanish:
o
(6LPa] ) + 7}; g = 0, (22)

.with boundary conditions given for 8¢;, for example &g, = 0 at the boundary wall.
Here, ay is the eigenvalue, and ( §L2[q] )x and g;; denote the eigensolution. Substi-

tuting the eigensolution &g;; into eq.(13) and using eq.(22), we obtain the following:
52F=(ak—a)f6q,-k2dV>0. (23)

Since eq.{23) is required for all eigenvalues, we obtain the following condition for the

state with the minimum dissipation rate:

0<0f<0!1, (24)
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where o; is the smallest positive eigenvalue, and « is assumed to be positive. When
the value of o goes beyond the condition of eq.(24), as when a7 < o, then the mixed
mode, which consists of the basic mode by the solution of eq.{16) where o = a; and
the lowest eigenmode of eq.(22), becomes the self-organized dissipative structure with
the minimum dissipation rate. The bifurcation point of the dissipative structure is

given by o = oy .
HI. ATTRACTORS IN INCOMPRESSIBLE VISCOUS FLUIDS

We apply here the general theory in the previous section to incompressible viscous
fluids described by the Navier-Stokes equation:

du
p— =—Vp + vViu, (25)
dt
where p, u, and p are the fluid mass density, the fluid velocity, and the pressure,
respectively, and V - u = 0. For simplicity, we assume v to be spatially uniform.

Using V -u = 0 and the two vector formulas of Vu? = 2u x (V xu) + 2(u- V)u and

V2u = V(V-u)— V x V x u, eq.{25}) is rewritten as:

a—uz—ﬁ——l—Vu2+uxw—E-Vxqu, (26)
at g 2 fe
where w = V x u is the vorticity. We find from eq.(26) that L¥[q] = — Vp/p
— Vu?/2 4+ uxwand LP[q] = — (¢/p)V x V x u, where g, = u. Using the

vector formula V- (ax b) =b -V xa—a-V x b, and the Gauss theorem, 8W;/8t
is known to be rewritten by volume integrals of vw”/p. Substituting these two op-
erators of ZM[q] and LP{q] into eqgs.(1) - (15), and using éw = V x bu, w = V x 1,

V- (axb)=Db-V xa—a-V xb, and the Gauss theorem, we obtain the following:
§F = 4[611-(%Vx qu—%u)dV
+2—vf[6ux(qu)+(Vxéu)xu]-dS:O, (27)
p
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82 F — 2/5u~(%VxVX5u—%5u)dV > 0. (28)

Here, we notice that the present dissipative operator LP[q] satisfies the self-adjoint

property of eq.(14) as follows:
v v
/u-(—Vx V x su)dvV = ]6u-(~Vx V x u)dV
p p
+£f[6ux (Vxu) + (Vxéu)xu]-dS, (29)
P

where the vector formula of V.- {(axb)=b -V xa—a-V xb is used twice. We
obtain the Euler-Lagrange equation from the volume integral term in eq.(27) for the
arbitrary variation éu, corresponding to eq.(16), as follows:

VxVxu = Ly . (30)

2v
The eigenfunction of this eq.(30) can be obtained for a given boundary value of u, as
a boundary value problem.
Using the eigenfunction of eq.(30) and refering eqs.(17) - (20), we obtain the
following:

ow"*
ot

= —a j(u*)2 dV = — a Wi*, (31)

Wi = e War' = e [P av = [uxx)e $Pdv,  (32)

u* = up'(x)e"F, (33)
6 *
(‘;lt :_%u“z——%Vxqu*, (34)

where uz"(x) denotes the eigensolution for eq.{30) for the given boundary value of u,
which is supposed to be realized at the state with the minimum dissipation rate during
the time evolution of the dynamical system of interest. Substituting the eigenfunction

u* into eq.(26), and using eq.(34), we obtain the equilibrium equation at ¢ = 5:
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vpt + %V(u*)2 = p(u* x w*). (35)
We find from eq.(33) that the eigenfunction u* for the present dissipative dynamic
operator — (¥/p)V x V x u constitutes the self-organized and self-similar decay
phase during the time evolution of the present dynamic system. We see from eq.(31)
that the factor o of eq.(30), which is the Lagrange multiplier, is equal to the decay
constant of flow energy W,; at the self-organized and self-similar decay phase.
Refering to eqs.{13} and (22} - (24), we next discuss the mode transition point
or bifurcation point of the self-organized dissipative structure due to the present
dissipative dynamic operator L[q] = — (¢/p)V x V x u . We obtain the associated
eigenvalue problem from eq.(28) for critical perturbations éu that make §?F vanish, -
and the condition for the state with the minimum dissipation rate that corresponds

to eq.(24), as follows:

VxVxéuk—-%Eéuk=0, (36)

0 < o < o . (37)

Here, oy is the eigenvalue, du; denotes the eigensolution, a; is the smallest positive
eigenvalie, the boundary conditions are éu, -dS = 0 and [ fu, x (V x fu,) ] -dS
= 0, and the subscript w denotes the value at the boundary wall. Since the present
dissipative dynamic operators LP[q] satisfy the the self-adjoint property of eq.(29)
and the boundary conditions are éu, - dS = 0 and [ du, x (V x éu,) ]-dS = 0 for
eq.(36), the eigenfunctions, a;, for the associated eigenvalue problem of eq.(36) form

a complete orthogonal set and the appropriate normalization is written as:

[a- (v xVxay)av =[a,-(Vxank)dV

= %’;—" L, dV
O
E

(38)
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where V x V x ap, — (axp/2v) az = 0 is used. When the flow-dynamics
system has some unstable regions, the nondissipative dynamic operator L!'[q] =
— Vp/p — (1/2)Vu? + u x w may become dominant, leading to the rapid growth
of perturbations and finally to turbulent phases. This process may yield spectrum
transfers or spectrum spreadings toward the higher or wider mode number region in
the flow u distribution. The amplitudes of perturbations are considered to grow to
nonlinear saturation, and not infinitely. We next investigate the change of flow u
distribution for a short time around or after the saturation of perturbation growth.
In this phase, operator LY¥[q] has become less dominant and LP[q] becomes more so.
The flow u distribution can be written by using the eigensolution u* for the boundary
value problem of eq.(30) for the given boundary value and also by using orthogonal
eigenfunctions a; for the eigenvalue problem of eq.(36) with the boundary conditions
of a;y-dS = 0 and [ax x (V x a.) }-dS = 0 at the boundary, as follows:
u:u*+§ckak. {39)
k=1

Substituting eq.(39) into eq.(26) and using eq.(30) and eq.(36), we obtain the follow-

ing:
ou* i B(Ckak) N 04 >, [0°58
—— = L — —u" - — A 40
St + ; H % [q] zu kgl 9 Crar , ( )
where L¥[q] = — Vp/p — Vu?/2 + uxw acts now as a less dominant operator, the

eigenvalues oy ate positive, and oy is the smallest positive eigenvalue. We find from
q.(40) that the flow components of u* and cxay. decay approximately by the decay
constants of @/2 and o4 /2, respectively, in the present short time interval, in the
same way as in eqs.(33) and (34). Since the components with the larger eigenvalue
a; decay faster, we see that this decay process yields the selective dissipation for

the higher mode number components. We understand from eq.(40) that if o < o,
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the basic component u* remains last and the flow distribution of u at the minimum
dissipation rate phase is represented approximately by u*. If the value of o becomes
greater than o, then the basic component u* decays faster than the eigenmode
a,. This faster decay of the basic component u* continues to yield further decrease
of W, resulting in the decrease of « itself, until & becomes equal to o, i.e. the
same decay rate state with the lowest eigenmode a;. Consequently, the mixed mode
which consists of both u*, having o = «;, and the lowest eigenmode a;, remains last
and the flow distribution of u at the minimum dissipation rate phase is represented
approximately by this mixed mode. The flow energy of this mixed mode decays as
W = et [(ug* + c1a;)? dV . This argument gives us a detailed physical picture
of the self-organization of the dissipative nonlinear dynamic system approaching the
basic mode u* and also of the bifurcation of the self-organized dissipative structure
from the basic mode u* to the mixed mode with u* and a; which takes place at o =
.

If g(x) is a sulution of eq.(30), it is easy to show that h(x) = V x g(x) satisfies
again eq.{30) and has the same decay constant & with that of the component g{x), by
taking rotation of eq.(30). Linear combinations of u* = e;g{(x) + e;h(x) also satisfy
eq-(30) and have the same decay constant o. In a special case with e; = /2v/ap e;,

the linear combinations of u* can be shown straightway to satisfy the following:
ap
Vxu® = ku* =—). 41
wo= e ([el=22) (41)
In this spacial case, u* x w* = 0, and then the equilibrium equation, eq.(35), becomes:
Vp o+ gV(u*F =0. (42)
In more general case with ex # /2v/ap e, u* contains other component so that

u X w* £ 0.
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When self-organized relaxed states of interest have some kind of symmetry along
one coordinate z, in x { for examples, translational, axial, toroidal, or helical sym-
metry ), or depend on only two dimensional variables perpendicular to z,, i.e. 8/8z,
= 0 ( two dimensional flow systems are also included in this case ), then eq.(30) can
be separated into two mutually independent equations, by using two components of

u; along z, and u;, perpendicular to z;, as follows:

* ap *
VxV = — 43
X X us 21/ us } ( )
* ap .
\% = - .
x V xul; 5, el (44)

Time evolution of self-organized and coherent surface flow structures after grid tur-
bulence shown in Figs.1 and 4 in [10] are considered to be represented by eq.{40) with
use of eq.(44). In three dimensional flow systems, when self-organized states have a
feature of \/ap/2v ul = V x u},, then the total flow of u* = u] + u, can be shown
straightforward to constitute solutions of the helical flow of eq.(41), by using eq.(44).
This type of helical flow solution for eq.(41) is considered to represent approximately
the helical flow pattern after the turbulent puffs shown in Fig.4 of [11] with use of

the NMR imaging observation.

IV. ATTRACTORS IN INCOMPRESSIBLE VISCOUS
AND RESISTIVE MHD FLUIDS

We show here another application of the general theory in Section II to incom-
pressible viscous and resistive MHD fluids such as liquid metals which are described

by the following extended Navier-Stokes equation and the equation for the magnetic

field,

pazij—Vp—gVu2+puxw— vVxVxu, (45)

14




%—?:Vx(uxB)—Vx(nj), (46)

where Ohm’s law is used and du/d? is rewritten by du/d in eq.(45) in the same way
used at eq.{25} for eq.(26). In this system, the flow energy pu?/2 and the magnetic
energy B? /2y interchange with each other through the terms of jxB and Vx( uxB )
in eqs.(45) and (46). The global auto-correlation W;;, corresponding to the total
energy, and its dissipation rate 0W,; /0t are written respectively as Wy; = 2 [[(pu?/2)+
(B?/2u0)]dV and W, /0t = =2 f[vu-V x V xu + B -V x (nj)/po JdV. Using the
vector formula V-{axb)=b-V xa—a-V x b, and the Gauss theorem, W /3¢
is known to be rewritten by volume integrals of (v «w® + 1 j°). We assume here, for
simplicity, that the resistivity 7 at the relaxed state has a fixed spatial dependence
like as n7(x). In the same way as was used at eqs.(27) and (28), substituting those of
W, and 8W; /6t into egs.(6) - (11}, we obtain the followings:

§F = 4]{au-(quvxu-—-‘;—’pu) + #iéB-[Vx(nj) - 52’iB] 1%

+2j£[y(5uxw+5wxu)+1(513xj+5jxB)]-ds =0, (47)
Ho

52F = 2[{ Su - (¥V x V x 6u-%p5u)
i .

+ 6B [V x (55)) - %513] WV > 0, (48)
where 1,6 = V x 6B is used. Here, we notice again that the dissipative operator
—V x {nj) [1.e. =V x (nV x B/p,) ] satisfies the self-adjoint property of eq.{14) as
follows:

[br- [V (aV xB)]dV = [b, [V x (47 x b)) dV
+ f[rg(v x b,) x by — n(V x by) x b;]-dS. (49)
We then obtain the Euler-Lagrange equations for arbitrary variations of éu and 6B
from the volume integral terms of eq.(47), as follows:

15



ap

VxVxu = Ly
xV xu TR (50)
™ @ __ .
Vi () = 2B, (51)
VxVxB = 2lep g 7 = const. {52)

where 1] = V x B is used. Using the eigenfunctions of eqs.(50) and (51), and refering
to egs.{17) - (20), we obtain the {ollowing:

aw,"

r = — /[p(ux)Q 4 (B*)

Ho

] dV = - Wi,‘* , (53)

[Ba"(x)e” #°

Wi = e Wig" = / {plug" (x)e ¥ + ” WV, (54)
u = ugt(x)e %, (55)

B* = Br"(x)e %, (56)
pa;*:—%pu“z—ququ’, {57)

= -IB = - Vx(m), (59)

where ug*(x) and Bg"(x) denote again the eigensolutions for eqs.(50) and (51) for
given boundary values of u and B, which are supposed to be realized at the state with
the minimum dissipation rate during the time evolution of the dynamical system of
interest. Substituting the eigenfunctions u* and B~ into eqs.{45) and {46}, and using

eqs.(57) and {58), we obtain the equilibrium equation at £ = Z5:

Ve + EVu? = J BT 4 pu” x ) (59)

Vx{(uwxB") = 0. {60)
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We find from eqs.(55) and (56) that the eigenfunctions u* and B~ for the present
two dissipative dynamic operators, — vV x V x u and — V x (nj), constitute the
self-organized and self-similar decay phase with the minimum dissipation rate and
with equilibrium equations of eqs.(59) and (60) during the time evolution of the
present dynamic system. We see from eq.(53) that the factor o of eqs.(50) and (51),
which is the Lagrange multiplier, is equal to the decay constant of energy W;; at the
self-organized and self-similar decay phase.

Refering to eqs.(13) and (22) - (24) for discussion of the bifurcation point of
dissipative structure, we obtain two associated eigenvalue problems from eq.(48) for
critical perturbations du and 6B that make 6°F vanish, and the condition for the

state with the minimum dissipation rate that corresponds to eq.(24), as follows:

Qrp

VXVX(Suk—z—VGBUkZO, (61)
V x (nV x §B;) — ”‘f"mk = 0, (62)
0 < o < o and ;. (63)

Here, oy and Sy are eigenvalues, éu; and §B; denote the eigensolutions, o and 5 are
the smallest positive eigenvalue of oy and fy, respectively, the boundary conditions are
fu,-dS =0, [ bu, x(V xéu,)]-dS =0, 6B, -dS =0 and [5(V x §B,,} x §B,]-dS
= 0. Since the dissipative operator — V x (nj) satisfies again the the self-adjoint
property of eq.(49), the eigenfunctions, by, for the associated eigenvalue problem of
eq.(62) for the magnetic field with the boundary conditions of by, -dS = 0 and
[V X biw) X byy] - dS = 0 form a complete orthogonal set and the appropriate

normalization is written as
]bk-[v x (V x b))]dV = /bj [V x (4V x by)] dV
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= "“f"/bJ by, dV

— “"f b s (64)

where V x {7V x by) — (u0fx/2) by = 0 is used. After spectrum transfers or
spectrum spreadings toward the higher or wider mode number region by instabili-
ties and field reconnections which are possibly followed by nonlinear saturation of
perturbation growth, it is considered that the nondissipative operator becomes less
dominant and the dissipative operator becomes more so. ( Field reconnections have
features to induce spectrum transfers toward both the lower and the higher mode
number regions. ) In this phase, u and B can be written by using eigensolutions u*
and B* for the boundary value problem and orthogonal eigenfunctions ax and by for

eigenvalue problems, as follows;

u=u + » ca, (65)
k=1
k=1

Substituting eqs.(65) and (66) into egs.(45) and (46) and using eqs.(50), (51), (61)

and (62) , we obtain the followings:

Su” 2. Ierag) N a ., a7
= T 67
gB +E:M:Vx(uxB)_gB*HE:’B_"Ckbk’ (68)

ot ot 2 2

k=1 k=1

where L¥[q} [=jx B — Vp — (0/2)Ve? + puxw]and V x (ux B ) act now
as less dominant operators, the eigenvalues a; and fi are positive, and o and fy are
the smallest positive eigenvalues. We find again from eqs.(67) and (68) that selective

dissipations for the higher eigenmode components give us a detailed physical picture

18



of the self-organization and the bifurcation of the dissipative structure, in the same
way as was shown after eq.(38) in the previous section. If @ < { oy and £ ), then
through interchange between the two of the flow and the magnetic energies by the
two terms of j X B and V x (ux B ) in eqs.(45) and (46), and after catching up slower
decay component of the two energies by the other faster one, the basic components of
u* and B* with the same value of o remain last. The bifurcation of the self-organized
dissipative structure takes place when the value of & becomes equal to the lower one
of a; and By, where the mixed mode with { u* and B” } and the corresponding lowest
eigenmode ( a; or by ) remains last.

In the same way as was used at eq.(41), two eqs.(50) and (52) can be shown to -

have the following helical solutions:

Vxu = g’ (Inlz\/g). (69)

VxB' = \B" (|\]= %). (70)

In this spacial case, u* x w* = 0 and j* x B* = 0, and then the equilibrium equation,

q.(59), becomes:
v+ 52’~V'(«ur")2 = 0. (71)

In more general cases, u* and B* contain other components so that u* x w* # 0 and
I xB"#£0.

In the same way as was used at eqs.(43) and (44), when self-organized relaxed
states of interest have some kind of symmetry along one coordinate z, in x or de-
pend on only two dimensional variables perpendicular to z,, i.e. 9/dz; = 0 ( two
dimensional systems are included in this case }, then two eqs.(50) and (51} can be
separated into two mutually independent equations, by using two components of u?

and B] along z,, and u}; and B], perpendicular to z,, as follows:
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apg L

v =2
x V xu; 5o W {72)
. o_ o, ,,
VxVxul = oy %L - (73)
V x (79 x BY) = 9‘-2“—03;, (74)
Vx(nVxBl) = 2UBY,, (75)

where 1o = V x B is used. In three dimensional systems, when self-organized states
with uniform n have a feature of fau,/2n B! = V x By, then the total field of
B* = B! + B, can be shown straightforward to constitute solutions of the helical

force-free field of eq.(70), by using eq.(75), in the same way as was used for u* after

eq.(44).

V. ATTRACTORS IN COMPRESSIBLE RESISTIVE MHD PLASMAS

We show here the third application of the general theory in Section II to com-

pressible resistive MHD plasmas described by the following simplified equations:

du

— = — 76
0B
§=VX(UXB)—VX(WJ): ()

where the viscosity is assumed to be negligibly small. In this system, W; and its
dissipation rate OW;; /0t are written respectively as W,, = 2 [[B%/2uo + pu?/2]dV
and OW,, [0t = —(2/1) J[ B-V x (nj) ]dV. We assume here, for simplicity, that
the resistivity n at the relaxed state has a fixed spatial dependence like as 7(x), as

is indeed the case in all experimental plasmas where 7 goes up to infinity near the
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boundary wall. Substituting those of W, and 0W,;/8t into egs.(6) - (11) in the same
way as was used at eqs.(47) and (48), and taking account of compressible p, we obtain

the followings:

9 . 2
§F = —f{zéB-[V x (1) — oB] - au(Sp= + péu-u) }dV
Ho 2 2

2
+ = §(mBxj + nsixB)-dS = 0, (78)
Ho

2
§F — f.f{aB-[v x (1)) — S6B] — a#o(épéu-u+f>6%) V> 0. (79)
0

We obtain the Euler-Lagrange equation from the volume integral term in eq.(78) for

arbitrary variations of 6B, &g and éu as follows:

V x (nj*) = 52"-13*, (80)

=0, Fu” = 0, (81)

where eq.(80) is the same with eq.(51) in Section IV. Using eqs.(80) and {81), and

refering to eqs.{17) - {(20), we obtain the following:

* * 2
amz = - ¢ (B) dV = —O’m;*, (82)
ot Ho
* —Z412
W2 = e *tW,z" = / [BaX(x)e T 4y (83)
Ho
B* = Bp(x)e 7, (84)
oB”
5 :-%B’:—Vx(nj'), (85)

where egqs.(84) and (85) are the same with egs.(56) and (58) in Section IV. Substi-
tuting u* and B” into eqs.(76) and (77}, and using eqs.(80), (81) and (85), we obtain

the equilibrium equation at ¢ = {z:
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Vpt = j x B, (86)

Vx(u'xB") =0. (87)

We find again from eq.(84) that the eigenfunction B” for the present dissipative
dynamic operator, — V x {rj), constitutes the sell-organized and self-similar decay
phase with the minimum dissipation rate and with equilibrium equations of eqs.(86)
and (87) during the time evolution of the present dynamic system. We also see from
eq.(82) that the factor a of eq.(80), which is the Lagrange multiplier, is equal to the
decay constant of energy W, at the self-organized and self-similar decay phase, as
was shown at eqs.(16) - {21) in the general self-organization theory.

Refering to eqs.(13) and (22) - (24) for discussion of the bifurcation point of
dissipative structure, we obtain again the associated eigenvalue problem from eq.(79)
for critical perturbations §B that make 62F vanish, and the condition for the state

with the minimum dissipation rate that corresponds to eq.(24), as follows:

V x (nV x §B) — “"25" 6B, = 0, (88)
0 < o < Gy, (89)

where eq.(88) is the same with eq.(62) in Section IV with the boundary conditions
of 6B, -dS = 0 and [(V x §B,) x §B,] - dS = 0. In the same way as was used
at eqs.(64), (66) and (68), we obtain the same eigenmode expansion of B by the
eigenslution B* for the boundary value problem and the orthogonal eigenfunction by
for eigenvalue problems, and also the same field equation, as follows;

B=B*+chbk, (90)

k=1
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oB” = O(Ciby) . — B

We find again from eq.(91) that selective dissipations for the higher eigenmode com-
ponents give us a detailed physical picture for the self-organization process and the
bifurcation of the dissipative structure at @ = f;, in the same way as was shown
after eq.(68) in the previous section. The flow energy in the present system dissipates
to vanish by the dissipation term of — V x (nj) in eq.(77) through interchange be-
tween the two of the flow and the magnetic energies by the two terms of j x B and
V x (uxB)in egqs.(76) and (77).

In the same way as was used at eq.{41), eq.(80) can be shown to have the same

force-free field solution with eq.{70) for the case with spatially uniform 7 :
VxB* = \B* (|x[=,/2H). (92)
2n
In this spacial case, j* x B* = 0, and then the equilibrium equation, eq.(86), becomes:
Vpr = 0. (93)

In more general cases, B* contains other components so that j* x B* # 0.

In the same way as was used at egqs.(43) and (44), when self-organized relaxed
states of interest have some kind of symmetry along one coordinate z, in x or depend
on only two dimensional variables perpendicular to z, i.e. 8/8z, = 0 ( two dimen-
sional systems are included in this case ), then eq.(80) can be separated again into

the same two mutually independent equations with eqs.(74) and (75}, as follows:

Vx(nV xB]) = “UB;, (94)
Vx iV x By,) = 2B, . (95)
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Conventional notations of B} = B} ( toroidal component } and B], = B}, ( poloidal
component } are used for the case of toroidal symmetric relaxed states. The field
reversal configuration (FRC) branch { By = 0 ) of relaxed states of plasmas observed
in merging experiments of two spheromaks shown in Fig.2 in [8] can be represented
by eq.(95).

As was shown after eq.(75), when self-organized states with uniform 7 in three
dimensional system have a feature of \/m B =V x B, then the total field of
B* = B! + B, can be shown straightforward to constitute solutions of the helical
force-free field of eq.(92), by using eq.(95). This force-free field is realized approxi-
mately in experimental low 8 plasmas ( i.e. no pressure gradient of Vp* = 0 ) when
spatially uniform resistivity 7 is assumed. In more general cases with nonumiform 7,
substituting J* = jjj + J} and pqjj = f(x)B” into Vx(nj") = (2/2)B" of eq.(80), using
taj = V x B, and comparing the factor of B*, we obtain the following approximate

solution for jjj at the self-organized relaxed state:

polj = (5 B*, (96)
where the subscripts || and L denote respectively the parallel and the perpendicular
components to the field B*. As was reported in [26], comparison between this the-

oretical result of eq.(96) with 3-D MHD simulations with both "nonuniform 7” and

"uniform 77 supports this dependence of jj on n profiles.
VI SUMMARY

As one of universal mathematical structures embedded in dissipative dynamic sys-
tems, we have presented a more refined general theory on attractors of the dissipative
structure in Section II, and have clarified that realization of coherent structures in

time evolution, which is expressed by eq.(4) with use of auto-correlations, is equivalent
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to that of self-organized states with the minimum dissipation rate for instantaneously
contained W,;, expressed by eq.(7). It is seen from comparison between egs.(5)- (7)
and eqs.(1) - (3) that this coherent structure of the self-organized state with the
minimum dissipation rate is determined essentially by the equations of the dynamic
system themselves, which rule the time evolution of the system, and key terms are
dissipative dynamic operators L”[q] in the system. We find from the variational
calculus of egs.(9) - (16) and from eqs.(17) - (21) that attractors of the dissipative
structure are given by eigenfunctions ¢ of eq.(16) for dissipative operators LY[q],
they constitute the self-organized and self-similar decay phase with the minimurmn dis-
sipation rate and with equilibrium states of eq.{21)}, and the Lagrange multiplier o
becomes equal to the decay constant of W, in this phase. The bifurcation point of
the dissipative structure is generally given by @ = a; with use of the smallest positive
eigenvalue o of the associated eigenvalue problem of eq.(22).

We have presented three typical examples of applications of the present general
theory to incompressible viscous fluids in Section 111, to incompressible viscous and
resistive MHD fluids such as liquid metals in Section IV and to compressible resistive
MHD plasmas in Section V, and have derived atiractors of the dissipative structure
in these dissipative fluids. All of the attractors in the three dissipative fluids have
been clarified to have the same features with those of attractors in the general theory
mentioned above. Using eigensolutions of basic modes for boundary value problems
and complete orthogonal sets by eignenfunctions for associated eigenvalue problems
for the three dissipative fluids, we have presented detailed physical pictures of the
self-organization of these dynamic systems approaching basic modes and also of the
bifurcation of the dissipative structures from basic modes to mixed modes. Those
physical pictures consist of two common fundamental processes; the first is spectrum

transfers or spectrum spreadings toward both the higher and the lower eigenmode
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regions for dissipative dynamic operators, caused by such as instabilities and field
reconnections, and the second is selective dissipations by higher eigenmodes associated
with dissipative operators.

Corresponding to the Fourier spectrum analysis shown in {23-25], egs.(40), (67},
(68) and (91) with use of eigenmode expansions suggest us that an eigenfunction spec-
trum analysis associated with dissipative dynamical operators LP[q] will be useful to
understand self-organization processes. This type of eigenfunction spectrum analysis
for our computer simulations of self-organization processes in resistive MHD plasmas
[26] and in incompressible viscous fluids are under investigations, whose results will

be reported elsewhere.
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