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ABSTRACT

A Monte Carlo simulation code 18 developed for the ICRF heating in helical systems,
which takes into account finite beta effects, complicated orbits of high energetic particles,
Coulomb collisions, and interactions between the particles and the applied waves. The
code is used to investigate the ICRF minority heating in the Large Helical Device. The
configuration of the magnetic fields changes significantly due to finite beta effects in the
Large Helical Device. The resonance layer position is found to be crucial to the heating
efficiency as the plasma beta increases. When the strength of the resonance magnetic field
1s set to the value at the magnetic axis, the higher heat efficiency is obtained and no clear
difference of the heat efficiency due to the finite beta effects is found at the high ICRF
wave power region. However the radial profile of the transferred power to majority ions
and electrons from minority ions changes by the deformation of the trapped particle orbits
due to the finite beta effects. The heat efficiency is improved if the radial electric field,
E,, is positive (E, is directed radially outward) and it is also improved by supplying *He

minority ions rather than proton minority ions.



1. INTRODUCTION

The electromagnetic wave heating in the ion cyclotron range of frequencies (ICRF)
has attracted much attention as an effective heating method and up to MW order of
ICRF heating experiments have been performed not only in tokamaks but also in helical
systems[1-4]. The theoretical studies of the ICRF heating in tokamaks have been done
mainly by solving the Fokker-Planck equation. However, recently the importance of finite
orbit effects in ICRF heatings of tokamak plasmas was pointed out[5,6] and it was shown
that radial profiles of fast ions and depositions change substantially. In helical systems
the study of the ICRF heating solving the Fokker-Planck equation was done by Fukuyama
et al.[7] and their result suggests that the heating property is strongly influenced by the
existence of loss cones for fast ions. Additionally, high energy particles produced by ICRF
heating draw a complicated orbit because of the non-axisymmetric configuration[8-11] and
these orbits of high energy particles would play an important role in the ICRF heating.
Therefore the inclusion of effects of finite particle orbiis is required to evaluate the more
accurate heating efficiency in helical systems. The Monte Carlo simulation method is one
of the useful methods to include these effecis and has been applied to the analysis of the
neutral beam injection heating in non-axisymmetric systems[12-16.

In this paper we study the ICRF heating of the plasma in the Large Helical Device
(LHD)[17] using the Monte Carlo simulation code, MOMOCQO, in which finite beta effects,
complicated orbits of high energy particles, Coulomb collisions, and interactions between
particles and the applied ICRF waves are included. The two ion component plasma which
consists of electrons, majority ions, and minority ions is considered in the minority heating
regime of ICRF heating. Choosing the small fraction of minority ions and the proper
k), almost all the wave energy is absorbed by minority ions through the ion cyclotron
resonance. We treat deuteron as the majority ion and proton or 3He as the minority

ion. The stored energy in minority ions is transferred to majority ions and electrons



through particle Coulomb collisions and, then, the plasma is heated up. If all of the
stored energy of minority ions is transferred to them the heating efficiency is considered
to be unity. However. there exist some loss mechanism of stored energy of minority ions,
e.g. the orbit loss and charge exchange loss. In a helical system the dominant mechanism
losing the stored energy in minority ions is the orbit loss of particles. Thus, we consider
only the dominant effect, i.e. the orbit loss, in the present paper. The loss boundary of
the particle confinement is given by the last closed magnetic surface of the equilibrium.
This assumption might over-count the loss of the particles and the extension of the loss
boundary to the vacuum vessel is need for further studies. In that case, however, the large
increment of the charge exchange loss of minority ions would occur and there also needs
to incorporate the effects of the charge exchange loss[13.16].

The magnetic configuration of LHD is calculated by the three dimensional magnetohy-
drodynamic (MHD) equilibrium code, VMECI18]. Magnetic surfaces of the LHD plasma
are deformed due to large Shafranov shift with increasing the plasma beta, resulting in
large changes in particle orbits. Changing the plasma beta we investigate the plasma beta
effects on the ICRF minority heating.

Effects of the radial electric field is also studied. In helical systems the radial electric
field, E., much affects particle motions not only at the plasma periphery but also near
the center of plasmal[9,10]. Here we introduce a model E, field and study the effects on
the ICRF heating. It should give us a clue to make clear the relation between the ICRF
heating and the radial electric field, E,.

The magnetic configuration of the LHD to be studied is shown in Section 2. In section
3 the orbit following part, Monte Carlo collision operator, and ICRF heating model are
explained. The results from calculations are shown in section 4. Firstly we show the
finite beta effects and, secondly the influence of the radial electric field and the species of

minority ions are shown. Conclusion is given in section 5.




2.” MAGNETIC CONFIGURATION OF THE LARGE
HELICAL DEVICE

In this paper we study the ICRF heating of the plasma in the Large Helical Device
(LHD) for the magnetic configuration obtained as follows. First we calculate the vacuum
magnetic field using the actual coil parameters of the LHD. The main parameters of LHD
are given in Table I. Controlling the axisymmetric poloidal fields, we can move the plasma
horizontally to shift the magnetic axis position inward or outward relative to the center of
helical coils. We can also add the ellipiticity to the magnetic surfaces adjusting the poloidal
fields. We, here, introduce the LHD configuration called “the standard configuration” [17]
in which the shift of the vacuum magnetic axis position, A, is —0.15m (0.15m inward
shift) and the toroidally averaged magnetic surfaces are nearly circular in the vacuum
field. This configuration satisfles the requirements for high plasma performance, i.e. a
good bulk particle confinement, a high plasma beta, and creating a divertor configuration.

Using the vacuum magnetic field configuration, we solve the three dimensional finite
beta MHD equilibrium by the VMEC code[18] under the fixed boundary condition. We
assume the pressure profile, P, as P = Py(1 ~1)? where 7 is the normalized toroidal flux.

Based on the obtained MHD equilibrium we construct the Boozer coordinates (1,6, 8},
where 9 is the toroidal flux divided by 27, and # and ¢ are poloidal and toroidal angle,
respectively. In this step we select dominant poloidal and toroidal Fourier modes of the
magnetic strength B. Because the numbers of Fourier modes of the magnetic configuration
in the constructed Boozer coordinates amounts to more than 1000, it is not convenient
to calculate particle motions with all the modes. The dominant modes are selected by
the condition, |Bp n(¥)] /| Bmaz{¥)| > €., where By, is the maximum mode amplitude
except Boo on the magnetic surface with a label of ¢ and ¢, is a critical parameter of
mode selection to be specified. Evaluation of this condition is done at the each ¢ surface

and if a mode satisfies this condition at least at one v surface this mode is included in the



all ¢ surfaces. Table II shows the number of selected modes in terms of plasma beta at
the axis, o, when £, = 1.0 x 107%. The rapid increase in the number of selected modes
shows that the configuration becomes more complicated with increasing beta.

Figure 1 shows the contour of the magnetic field strength in the Boozer coordinates. We
show the four beta value cases, Gy = 0.0,2.0,4.0,6.0%, with three different toroidal angles,
¢ =10.0,1/4 x 2r/m and 2/4 x 27 /m where m{= 10) is the toroidal pitch number shown
in Table I In the real coordinates these magnetic surfaces indicate the longitudinally
elongated shape for the toroidal angle ¢ = 0.0 and the laterally elongated shape for
¢ = 2/4x27/10. Significant changes in the magnetic configuration are attributed to large
Shafranov shifts due to the finite beta effects. Figure 2 shows the contours of mod-B,,,,
which approximately give the orbits of deeply trapped particles[19]. In Fig. 2 magnetic
surfaces are concentric circles (not shown) and it is seen that the contours deviate from
the magnetic surfaces more and more as 3; increases. This means that the confinement
of deeply trapped particles becomes worse with increasing beta. This fact suggests that
motions of trapped particles as well as transition particles are more complicated in higher

beta plasma.

3. NUMERICAL PROCEDURE

In order to study the ICRF minority heating taking into account the complicated
motions of minority ions, Coulomb collisions of minority ions with majority ions and
electrons, and interactions of minority ions with the ICRF wave, we develop a Monte
Carlo simulation code “MOMOCO”. This code mainly consists of three parts; particle
orbit following part, particle collision part, and ICRF heating part.

In the particle orbit following part we solve the equation of motion in the Boozer

coordinates. Starting from the Hamiltonian of charged particle,

1
Hzgmvﬁ+uB+q@, (1)



where m, ¢, ¥ and p are the mass, the charge, the parallel velocity and the magnetic
moment of the particle, respectively, we can obtain equations of motion in terms of the

Boozer coordinates at finite plasma beta, which are given by[20]
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and % is the toroidal flux divided by 27, p. = mv/¢B, and 6 and ¢ are the poloidal and
toroidal angles, respectively. I(y) is the toroidal current within a flux surface, g(1) is the
poloidal current outside a flux surface and ¢ is the rotational transform. We solve the
time development of egs. (2) to (5) with high accuracy.

In order to take into account Coulomb collisions of minority ions with majority ions
and electrons we introduce the Monte Carlo collision operator based on the binominal
distribution[21}. The pitch angle scattering by the particles of species ¢ after the time

interval At is given in terms of A, A = /v, by
Aat1 = Al — wgs ALY + 0[(1 — A2 )rg AL, (8)

where o takes +1 or —1 with equal probabilities. vy, is the deflection collision frequency

written by
1/2 -
w = 5(5) w A )
Bz) = % [ vl (10)
U(z) = (& —13)/2:°, (11)
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where 2 = v /vy and vy, is the thermal velocity of the background particles of species s

(s =1iore). vg, is the Braginskii collision frequency,

4 7\ V2 Ayglin,
VBs =3 (E) 3n (12)

where A, is the Coulomb logarithm, and g¢,, 7, and T; are the charge, the density, and the

temperature of the background particles of species s, respectively. The energy scattering

after the time interval At is given by

3 En dVEs 1/2
2 02, 1
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where

ve, = 3(n/2)"?vp.[¥(z)/2]. (14)

In this collision operator we decide the time step, At, to satisfy the condition , vy, At << 1.
We calculate the pitch angle scattering and energy scattering of minority ions by the two
species, i.e. majority ion and electron, in every time step.

When a minority ion passes through the ion cyclotron resonance layer the particle

interacts with the ICRF waves to change its velocity. The resonance condition is given by
W k“U” = TLQ, (15)

where w and k| are the frequency and the parallel wave number of the applied ICRF wave,
respectively. v) and {2 are the parallel velocity and the cyclotron frequency, {2 = gB/m,
of the minority, respectively. Assuming k; «~ 0, the change in the veloéity occurs in the

perpendicular direction and is given by[22]

Ay, = %I gmer |

Ei| Jurlkip) +|E-] Japa(kip)] (16)

where p is the larmor radius, p = mv; /¢B, and J, is the n-th Bessel function of the first
kind. @, is the phase of the ICRF wave which is treated as uniform random between 0 to

27 and [ is the function related to the resonance duration time. When the turning point



dos‘e not close to the resonance layer I is written as [ = \/m where € is the time
derivative of Q, @ = g/m{wv - V)B. As the turning point comes very near the resonance
layer {2 becomes zero (v =~ 0) and the higher order correction in terms of {2 should be
included. That is expressed [5,23,24] as I = 2x[n{2/2] /3 4i(0), where Ai is the Airy
function. However we introduce the more simplified model in which I takes the constant
value when the turning point closes to the resonance layer. The obtained results, e.g. heat
efficiency, transferred power and etc., for the two models show good agreements and we
here use the simplified model when the turning point closes th the resonance layer in the
following calculations.
Further assuming & p ~ 0 and n = 1, we obtain

_ qERF

A Ier 7
vy e (17)

We assume that the applied wave electric field on the resonance layer, Egp{= |E,]), is
uniform over the resonance layer and fixed in time.
In order to study the influence of the radial electric field we introduce a model radial

electric field which is expressed as

g = -0 (18
Hy) = Bl -7 (19

We use 1000 ~ 3000 particles and assume that initially all the minority ions form a

Maxwellian distribution in the velocity space;

116) = g sol-v*/ 21 (20

where NV is the fotal number of minority ions used in the calculations. In Eq. (20), vy,
is the thermal speed of initially loaded minority ions with a constant temperature of 1.0
keV . Pitch angles of the minority ions are randomly distributed. The minority ions are

initially loaded in the real space by

PP = Nmg x|~ ], (21)
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where 1 = /1, (1, is the flux function on the last closed flux surface). Note that ¢ is
proportional to 72, where r is the average minor radius. nmg is the density of minority
ions at the axis (¢ = 0) and ¢ is the inverse of the standard deviation, set to be 4 in the
present paper. The particles are randomiy distributed in the § and ¢ space.

Minority ions are accelerated on average by the waves and heat the majority ions
and electrons through Coulomb collisions. Therefore temperatures of majority ions and
electrons change during the development of ICRF heating. However, we fix the density
and temperatures of majority ions and electrons during the calculations for simplicity.

The distribution of majority ions and electrons are given by

ni(y) = ne(0) =noll - )", (22)
T(¢) = To(l-9)", (23)
T(y) = To(l-¥)", (24)

where n; and n. are the density of majority ions and electrons, respectively, and T; and 7,
are the temperature of majority ions and electrons, respectively. We set the parameters
as ng = 1.0 x 10%m™3, T,y = 1.0keV, Tj = 1.0keV and @) = a3 = a3 = 2. This simple

model enables us to gain an insight about basic physics lying under the ICRF heating.

4. RESULTS

4.1 Effects of Finite Beta

We perform a large number of simulation runs changing the plasma beta, the strength
of wave electric field, Err, and the position of resonance layer. First we show the time
development of our simulation for a typical case of parameters; 5y = 0.0%. Egr = 2.5 X
10°V/m, and ® = 0.0eV. The strength of the resonance magnetic field is set to the value
at the magnetic axis. Figure 3-(a) shows the time development of averaged total energy

of minority ions (solid line) and perpendicular one (dashed line). Initially the pitch angle
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of the minority ions are randomly distributed form 0 to 7. Most of particles (~ 80%) are
circulating particles at the first stage of the time development. Circulating particles move
nearly along a magnetic field line and change the perpendicular velocity by the amount of
Aw, given by Eq. (17) whenever they pass through the ion cyclotron resonance layer. The
particles gain energy perpendicular to the magnetic field with time and the pitch angles
of the particles are increased. Then the particles turn into trapped particles. From this
figure we can see the rapid increase of the average energy and the rapid production of the
high energy tail of minority ions during the first 1ms. In contrast with it, around 10ms the
average energy of minority ions seems to be saturated, because the absorbed ICRF wave
power by minority ions, Fg.,, 18 balanced with the other two powers; the power transferred
to majority ions and electrons, Pjrq,s, and the power lost by the orbit losses of minority

ions, Pl,ss- Here, we define the absorbed power, Py, by
M
FPops =& Z AF, (25)
i=1

where AE; is the energy change given by Eq. (17), M is the number of times passing
through the resonance layer of minority ions per unit time. £ is a factor to translate the
value obtained by the simulation into that of real plasma and is given by Ny /Nuc,
where N,,;, 18 the actual numbers of minority ions in the plasma and Ny is the numbers
of minority ions used in the Monte Carlo simulations. In order to evaluate the value of
&, we must specify the fraction of minority ions in the plasma which is determined based
on the relation between the absorption power and the strength of wave electric field in
the real plasma. Throughout the paper we assume that the fraction of minority ions is
3%[25]. Other powers, Pigns and P, are defined in a similar way.

The absorbed power, Pg,, changes during the time development. It is large at the
initial stage (t < 1ms) because of the relatively small vy and the large fraction of circulating
particles which frequently pass through the resonance layer (M in Eq.(25) is large). After 2
or 3ms the particle energy rises and the fraction of trapped or transition particles increases,

resulting in smaller Py,. Finally P, becomes close to a constant value. Fig. 3-(b) shows
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the time development of the total absorption energy to minority ions, f Pu.dt, (solid line)
and the total transferred energy, [ Piransdt, (dotted line). The dashed line shows the
fraction of the transferred energy in the reduction of the minority ion energy and we can
see no remarkable change in the fraction of transfer energy when ¢ > 4ms. Hereafter we
discuss the heating efficiency using the saturated value shown here.

We consider the finite beta effects on the ICRF minority heating changing the plasma
beta value at the center, Jp. from 0.0% to 6.0%. We show the radial profile of the trans-
ferred power from minority ions to majority ions and electrons. Figure 4 shows the com-
parison of Pians between (a) the 5y = 0.0% case and (b) o = 6.0% case. In both cases
the strengths of the resonance magnetic field are set to the value at the magnetic axis
and the strengths of wave electric field, Erp are fixed to Erp = 2.5 X 103V/m. The
closed circles show the transferred power to majority ions and the open circles are that
to electrons. In both cases the transferred powers to electrons are larger than those of
ions. This is because many of minority ions are accelerated up to a larger energy than the
critical energy[26] E, ~ 10 keV and minority ions heat mainly electrons.

The significant difference of radial profile can be seen between the two cases. In the
case of fp = 0.0, the profile has a peak near the center and decreases roughly monotonically
with 7. On the other hand two peaks of Py.an. are found in the case of 3y = 6.0%.

Figure 5 shows the projection of the typical particle orbits on the poloidal cross section
for two different 3y values and pitch angles. The particle collisions and the interaction
with ICRF wave are not applied. It is found that the orbits of the deeply trapped particles
(Fig. 5-(a) and (¢)) agree well with the By, contour lines in Fig. 2. From this figure the
excursion of the deeply trapped particle from the original magnetic surface would enhance
the power transfer not only at the center region but also at the plasma periphery in the
case of 3y = 6.0%. Additionally, the behavior of the transition particles in the case of
Bo = 6.0% (Fig. 5- (d)), which is different from that of the 3y = 0.0% case (Fig. 5- (b)),

would also contribute to the formation of two peaks. In the case of 4, = 0.0% (Fig. 5
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(b}) the transition from helically trapped particle to circulating particle occurs and the
circulating particle moves outward (the center of the torus is located on the left side of
the Figures). Thus, the circulating particle crosses the different B, contours in Fig. 2
at the transition point. On the other hand, in the case of Fy = 6.0% the two types of
transition are found and the particles does not shift on the different B,,;, contour so much
(Fig. 5-(d)), which leads to keeping the resonance with the RF wave in the same orbit of
B,.in. Therefore, in the case of 3y = 6.0%, the high energy particles would be distributed
near the B,,;, region where magnetic field strength is equal to the resonance magnetic
field. Then the transferred power from minority ions is also enhanced near that region.
As a result the radial profile of the transferred power has two peaks in r {see the radial
position of the B,,,, line of the resonance magnetic field strength in Fig. 2}). On the other
hand, in the case of 3y = 0.0%, because of the change of B,,;, during the transition the
distribution of high energy particles would have a broader profile. Thus the radial profile
of the transferred power does not have two peaks. Note that the radial profile of Piqns
highly depend on the nature of the transition particles.

We show next the finite 7 effect on the heating efficiency of the ICRF minority heating.
We introduce the transfer rate which is defined by Prons/ Pass a8 a measure of the heating
efficiency. Figure 6 shows the plots of transfer rates versus P,s. The strengths of the
resonance magnetic field are set to the value at the magnetic axis. The absorption power is
changed by changing the RF electric field on the resonance layer from Egr = 1.0x 103V /m
to Err = 3.0 x 103V /m in this Figure. In the case of 3y = 0.0%, the transfer rate is 92%
for FPaps = 2MW and decreases monotonically with increasing in F,,,. For finite 8 values
(8o = 4.0 and 6.0%) the transfer rates are around 70% when P, < 5MW. However, no
remarkable differences in transfer rates are found for different 3 values (5, = 0.0, 2.0, 4.0,
6.0%) in the region of high absorption power (P, > 5MW).

We study the influence of the position of resonance layer on the transfer rate changing

the applied wave frequency, fo. Assuming k; ~ 0 we find that the resonance layer cor-
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responds to the isosurface of the strength of magnetic field defined by B, = 27fm/q.
Hereafter we use B,.s t0 express the position of the resonance layer. We vary B, from
2.8T to 3.2T. Figure 7 show the influence of the resonance layer position on the transfer
rate. Closed circles, triangles, and squares (or solid, dashed, and broken lines) are the re-
sults for B,.. = Ba.is. In the case of 3y = 0.0% the transfer rate does not change so much
even if B,., deviates from B,.i,. However, as indicated by open triangles and squares in
Fig. 7, the transfer rates are reduced if the position of the resonance layer is moved from
the layer with B,.s = Basis. In addition to this fact it is found that the absorption power,
P, changes according to the position of resonance layer. For instance, in the fy = 6%
case, Py, = 4,6, and 12MW for B,., = 3.2, 2.8(B,.:.), and 3.0T, respectively, for the

same strength of the RF electric field, Egr.

4.2 Influence of radial electric field on the ICRF heating

In this section we study the influence of the radial electric field on the ICRF heating.
The model field given by Eqgs. (18) and (19) are employed. The introduction of the radiai
electric field adds the E x B drift to the particle motion. When the directions of E x B drift,
Vex g, and the VB drift motion, Vv g, are the same, the confinement of trapped particles
is improved, while it deteriorates if they are opposite. In the case of |Vexg| >> |Vos|
the particle confinement is improved regardless of both directions. Ewven for circulating
particles the E x B drift may affect their confinement[13].

The plots of the transfer rate for the different electric potential values are shown in
Fig. 8. Closed circles, triangles, and squares (or solid, dashed, and broken lines) show the
transfer rates for 3, = 0.0, 4.0, 6.0% respectively when &, = 0. Open circles, triangles,
and squares are transfer rates with radial electric fields of &3 = —1.0keV, +1.0keV, and
+5.0keV. It is seen from Fig. 8 that the transfer rates are improved if &5 > 0 (£, > 0)
and deteriorate if &, < 0 (£, < 0).

Figure 9 shows the orbits of deeply trapped particle based on the mod-B,,;, contours.
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In the case of ®; > 0 the orbits approach concentric circles to be well confined. On the
other hand the orbits of deeply trapped particles are largely deformed in the case of &5 < 0
and the fraction of unclosed orbits is increased. Thus the better confinement of deeply
trapped particles are obtained in the @y > 0 case and the confinement deteriorates in the
®; < 0 case. As a result the higher transfer rate is found in the ®4 > 0 case.

When we compare the changes in the transfer rates of the finite § case with those of
B = 0.0% case due to the radial electric field the larger changes are found in the finite
3 case. This comes from the fact that the distorted orbits of helically trapped particles
are reformed to improve their confinement by the £ x B drift. In Fig. 9 the orbits of

By = 6.0% case are reformed better than those of 3, = 0.0% case.

4.3 Influence of the species of minority ion

In this section we consider *He ions as minority ions to compare the result with that
of proton minority ions. In the He minority case the improvement of the transfer rate
is expected because of the relatively short mean free path and small larmor radius. The
comparison of the results between proton and *He minority cases is shown in Fig. 10.
Large increases in P, are found in all *He cases (open circles, triangles, and squares)
and these values are nearly two times larger than those of the proton minority case
(closed circles, triangles, and squares) for the same Egp. Assuming the same temper-
atures for two species of minority ions we can evaluate the ratio of Py, by Eq. (17) to be
Pos(*He)/ Pyys(proton) = 1.86 which agrees with the simulation results.

The decreases of the number of lost minority ions are found in all &, case. In the
Go = 0.0% case the orbit loss decreases by 10% compared to the proton case and that
decrease is larger when the plasma beta is increased. In the Jy = 6.0% case the orbit loss
is less than that in proton case by 30%.

Transfer rates are improved in the 3He minority case by a factor of 1.3 ~ 1.5. That is

due to the increase in collisions of minority ions with majority ions and electrons and the
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decrease in orbit losses.

The radial profile of the transferred power to the majority ions and electrons are shown
in Fig. 11; (a) fo = 0.0% and (b) fy = 6.0%. Comparing with the proton minority case
large increases in the transferred power to majority ions are found in both cases. This
is explained by the increase in the critical energy, E.. In the proton minority case the
critical energy is E. ~ 10 keV near the plasma center and energy of protons flows mainly
to electrons, while in the 3He minority case the critical energy is E. = 27 keV near the
plasma center and the partition to ions becomes large. The critical energy, E,, is roughly
proportional to the electron temperature and decreases with r. Thus the reduction of the

transfer power to ions is found in the periphery of the plasma.

5. CONCLUSION

We have investigated the ICRF minority heating in the LHD plasma using the Monte
Carlo simulation code, MOMOCO, in which finite beta effects, complicated orbits of
high energetic particles, Coulomb collisions, and interactions between particles and the
applied waves are included. The three dimensional MHD equilibrium is calculated by the
VMEC code and the particle orbits are followed in the Boozer coordinates according to
the equilibrium.

We have firstly shown the Monte Carlo simulation results for the time development
of the minority ion heating in a helical system. The average energy of minority ions
increases rapidly and a saturation of the average energy appears. In this saturated state
the absorption power of the minority ions from ICRF wave, Pa,, balances with the sum of
the power transferred to majority ions and electrons, Pireas, and the power lost by the orbit
losses of minority ions, Py The finite beta effects on the radial profile of the transferred
powers to majority ions and electrons have been investigated. The clear change in the

radial profile of transferred power can be seen when the plasma beta is increased. This
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comes from the deformation of the trapped particle orbits due to the finite beta effects.
The finite beta effects on the heating efficiency have been studied. It has been shown
that the heating efficiency decreases with increasing plasma beta, but the efficiencies are
not changed so much for different betas if the ICRF power is high. The dependency of
the heating efficiency on the resonance layer position is also found due to the finite beta
effects and the maximum heating efficiency is given when the resonance magunetic field
strength is adjusted to the strength at the magnetic axis. The influence of radial electric
field on the ICRF heating has been studied. The introduction of the radial electric field
E, improves the heat efficiency when E, is positive (E, is directed radially outward). It
has been also found that the heat efficiency for the 3He minority case is up to 30% higher
than that of the proton minority case.

In the present paper we have assumed constant temperatures of majority ions and
electrons. However majority ions and electrons are heated by the slowing down process
of accelerated minority ions and this process is affected by the change in temperatures.
It will be one way to incorporate the Monte Carlo code with a plasma transport code
to treat the temperatures consistently. We have assumed kp~ 0, k1 p << 1, constant
Egr over the resonance layer, and neglecting right hand circulating electric field of the
ICRF wave for simplicity. Another problem to be solved is the influence of escaping fast
ions on creating a radial electric field. The radial electric field, then, changes the loss
cone structures for fast ions. Thus it is necessary to determine the radial electric field

consistently by including fast ion radial losses. These problems are under investigation.
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TABLE I. PARAMETERS OF THE LHD

number of helical coil {

number of field period m

number of pairs of poloidal field coils
major radius R

minor radius a

pitch modulation parameter of winding law a

shift of magnetic axis A

strength of central magnetic field By

10

3.9m
0.56m
0.1
—0.15m
3.0T

TABLE II. NUMBER OF FOURIER COMPONENT

Fo [%] 0.0 20 40 6.0

number of modes 33 42 55 114
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FIG. 1.

FIG. 2.

FIG. 3.

FIG. 4.

FIG. 5.

FIG. 6.

FIG. 7.

FIGURE CAPTIONS

Contour lines of the magnetic field strength of the finite beta LHD configurations in

the Boozer coordinates. The bold lines show the contour lines of B=3.0T.

Mod-B,;» contours of the finite beta LHD configurations in the Boozer coordinates.

The bold lines show the contour lines of B,,,,=3.0T.

Time development of the minority ion heating; (a) averaged total energy (solid line)
and averaged perpendicular energy (dashed line) and (b) the time development of
the absorption energy of minority ions (solid line) and the transferred energy to

background particles (dotted line). The dashed line shows the transfer rate.

Comparison of the transferred energy to majority ions and electrons for two different
plasma beta: (a) 8o = 0.0% and (b) Fp = 6.0% and other parameters are Egrp =
2.5x 10°V/m and &y = 0. The closed circles show the transferred power to majority

ions and the open circles are that to electrons.

Typical orbits of trapped particle in LHD. (a) and (b) shows the typical orbits of
deeply trapped particle and transition particle in the case of 5y = 0.0%, respectively,
and (c) and (d) are those in the case of By = 6.0%, respectively. We consider the
50keV protons and the particle collisions and interaction with ICRF wave are not

included.

Plots of the power transfer rate with changing the plasma beta and the strength of
the electric field of RF wave. Closed circles, triangles, and squares (or solid, dashed,

and broken lines) show the results of 5y = 0.0,4.0, and 6.0%, respectively.

Influence of the resonance layer position on the transfer rate. Closed circles, trian-
gles, and squares (or solid, dashed, and broken lines) show the results of B, = Bayis

and open circles, triangles, and squares show the results of B,., # Buzis-
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FIG. 8.

FIG. 9.

FIG. 10.

FIiG. 11.

Influence of the radial electric field on the transfer rate. Closed circles, triangles,
and squares (or solid, dashed, and broken lines) show the results of ®; = 0 and open

circles, triangles, and squares show the results with radial electric field.

Orbits of deeply trapped particle with radial electric field based on the mod-B,,,,
contours: (a) 8y = 0.0% case and {b) Fy = 6.0% case.

Comparison of the results between proton and *He cases. Closed circles, triangles,
and squares (or solid, dashed, and broken lines) show the results of proton minority

case and open circles, triangles, and squares show the results of *He minority case.

Radial profile of the transferred power to majority ions and electrons for *He minority
case; (a) 3p = 0.0% and (b) Bo = 6.0% and other parameters are Egp = 2.5x10°V/m

and ‘I’() = 0.

22









average energy [keV]

energy {arbitrary unit)

total energy

perp. energy

.01 015 02
time [sec]

: T T i T T T T T H T T T T T T T T T T
. transfer rate
. absorption energy
transferred snergy -
| 1 i ! I ! L l 1 I { | 1 1 1 | i l | 1 1 1
0 005 o1 015 02 025

iime [sec]

FIG. 3

1.0

8j21 19/5UBN

0.0



o
o

transferred power [W/m?]
o

0.2

transferred power [W/m?®]
o

(a)

T T T T T T T T I

T

o electron
o o .
* 10N
o
o
Lo o J
o
o
L o o ° a -
)
[=] oo OO
oo
Q o ooo
o
[e So P
° o
=] -]
o
L e aoo 4
- o o0
L J
sa” . o..o L] o
"% o esete o
o®a a
N [ ] | P fenhanal % I
radius [r/a]
T T T T T T T T T I I
b o —
o
- o o -
a o
Sg
- . 4
© o0
L ° oo ] * -
x© o o °°
. e o o°° @ o200 o
'éioo - oe So0 ° 1
. o e 0O

—f-

radius [r/a]

FIG. 4




FIG. 5



power transfer rate

0.0

® 5=00%
A B=40%
B 5=60%

| 1 ]

10 20
absorption power [MW]

FIG. 6




power transfer rate

O @ =00%
- A A B=40%
O M B8=60%

t | 1 1

00 10 50
absorption power [MW]

FI1G. 7



1.0 ! 1 ! I ' t ! | !

Bo = +5.0kV
| @y = +5.0kV ]
@y = +5.0kV
0.5 B $y = —1.0kV ®o = —1.0kV &y = +1.0kV

power transfer rate

O ® £ =00%
— A A B=40%

T B =60%

1 1 L 1 | I I

0.0 10 50
absorption power [MW]

FIG. 8







power transfer rate

1.0

O
o1

0.0

O @ 8=00%
A A B=40%

O 8=60%

1

10 50
absorption power [MW]

FIG. 10




transferred power [W/m?]

transferred power [W/md]

o
~

<
™

o
o

o
-

O

o electron
o . _
« 1On
oo
o
a
o
o
B & % o -
. °°° o .
B - '™ o Do .
e .o Oa.o oP
[ ¢ e @ Ca
.
[T . © < c’t’ooacﬁo"-’ o ]
*® . - o o
oy .. oooocpo
SRS ST T S ST SN bt YO SO G
radius [r/a]
T T T T T T T T I T Y
o o
-
L o ]
) o
- LX) _
.. e
° . 3 c
° . og ]
™ o* © Q /o] oc® -
L oﬁo 2. o ° c00®
- oo o 4 o
~ 0% o o
o a gua®te ©.0, 9
as h { .[ .I :‘.1.'.1_0.1--1 J 1

0.5

1

radius [r/a]

FIG. 11



NIFS-196

NIFS-197

NIFS-198

NiFS-199

NIFS-200

NIFS-201

NIFS-202

NIFS-203

NIFS-204

NIFS-205

NIFS-206

NIFS-207

NIFS-208

Recent Issues of NIFS Series

T. Mori, K. Akaishi, Y. Kubota, O. Motojima, M. Mushiaki, Y. Funato
and Y. Hanaoka, Pumping Experiment of Water on B and LaBg Films

with Electron Beam Evaporator ; Oct., 1992

T. Kato and K. Masai, X-ray Spectra from Hinotori Satellite and
Suprathermal Electrons ; Oct. 1892

K. Toi, S. Okamura, H. Iguchi, H. Yamada, S. Morita, S. Sakakibara,
K. Ida, K. Nishimura, K. Matsuoka, R. Akivama, H. Arimoto,

M. Fujiwara, M. Hosckawa, H. idei, O. Kaneko, S. Kubo, A. Sagara,
C. Takahashi, Y. Takeiri, Y. Takita, K. Tsumori, |. Yamada and

H. Zushi, Formation of H-mode Like Transport Barrier in the CHS
Heliotron | Torsatron ; Oct. 1992

M. Tanaka, A Kinetic Simulation of Low-Frequency
Electromagnetic Phenomena in Inhomogeneous Plasmas of Three-
Dimensions ; Nov. 1992

K. lteh, 8.-I. ltoh, H. Sanuki and A. Fukuyama, Roles of Electric Field
on Toroidal Magnetic Confinement, Nov. 1992

G. Gnudi and T. Hatori, Hamiltonian for the Toroidal Helical
Magnetic Field Lines in the Vacuum; Nov. 1992

K. ltoh, S.-.. ltoh and A. Fukuyama, Physics of Transport Phenomena
in Magnetic Confinement Plasmas; Dec. 1992

Y. Hamada, Y. Kawasumi, H. Iguchi, A. Fujisawa, Y. Abe and
M. Takahashi, Mesh Effect in a Parallel Plate Analyzer; Dec. 1992

T. Okada and H. Tazawa, Two-Stream Instability for a Light lon Beam
-Plasma System with External Magnetic Field; Dec. 1992

M. Osakabe, S. Hoh, Y. Gotoh, M. Sasao and J. Fujita, A Compact
Neutron Counter Telescope with Thick Radiator (Cotetra) for Fusion
Experiment; Jan. 1993

T. Yabe and F. Xiao, Tracking Sharp Interface of Two Fluids by the
CIP (Cubic-Interpolated Propagation) Scheme, Jan. 1993

A. Kageyama, K. Watanabe and T. Sato, Simulation Study of MHD
Dynamo : Convection in a Rotating Spherical Shell; Feb. 1993

M. Okamoto and S. Murakami, Plasma Heating in Toroidal Systems;
Feb. 1993



NIFS-209

NIFS-210

NIFS-211

NIFS-212

NIFS-213

NIFS-214

NIFS-215

NIFS-216

NIFS-217

NIFS-218

NiFS-219

NIFS-220

NIFS-221

NIFS-222

K. Masai, Density Dependence of Line Intensities and Application
to Plasma Diagnostics; Feb. 1993

K. Ohkubo, M. Hosckawa, S. Kubo, M. Sato, Y. Takita and T. Kuroda,
R&D of Transmission Lines for ECH System ; Feb. 1993

A. A. Shishkin, K. Y. Watanabe, K. Yamazaki, O. Motojima,
D. L. Grekov, M. S. Smirnova and A. V. Zolotukhin, Some Features of
Particle Orbit Behavior in LHD Configurations; Mar. 1993

Y. Kondoh, Y. Hosaka and J.-L. Liang, Demonstration for Novel Self-
organization Theory by Three-Dimensional Magnetohydrodynamic
Simulation; Mar. 1993

K. lteh, H. Sanuki and S.-I. ltoh, Thermal and Electric Oscillation
Driven by Orbit Loss in Helical Systems; Mar. 1993

T. Yamagishi, Effect of Continuous Eigenvalue Spectrum on Plasma
Transport in Toroidal Systems; Mar. 1993

K. Ida, K. ltoh, S.-l.itoh, Y. Miura, JFT-2M Group and A. Fukuyama,
Thickness of the Layer of Strong Radial Electric Field in JFT-2M H-
mode Plasmas; Apr. 1993

M. Yagi, K. ltoh, S.-1. ltoh, A. Fukuyama and M. Azumi, Aralysis of
Current Diffusive Ballooning Mode; Apr. 1993

J. Guasp, K. Yamazaki and O. Motojima, Particle Orbit Analysis for
LHD Helical Axis Configurations ; Apr. 1993

T. Yabe, T. Ito and M. Okazaki, Holography Machine HORN-1 for
Computer-aided Retrieve of Virtual Three-dimensional Image ; Apr.
1993

K. itoh, S.-1. ltoh, A. Fukuyama, M. Yagi and M. Azumi,
Self-sustained Turbulence and L-Mode Confinement in Toroidal
Plasmas ; Apr. 1993

T. Watari, R. Kumazawa, T. Mutoh, T. Seki, K. Nishimura and

F. Shimpo, Applications of Non-resonant RF Forces to Improvement
of Tokamak Reactor Performances Part I: Application of
Ponderomotive Force ; May 1993

8.-1. Itoh, K. ltoh, and A. Fukuyama, ELMy-H mode as Limit Cycle
and Transient Responses of H-modes in Tokamaks ; May 1983

H. Hojo, M. Inutake, M. Ichimura, R. Katsumata and T. Watanabe,



NIFS-223

NIF8-224

NIFS-225

NIFS-226

NIFS-227

NIFS-228

NIFS-229

NIFS-230

NIFS-231

NIFS-232

NIFS-233

NIFS-234

NIFS-235

NIFS-236

Interchange Stability Criteria for Anisotropic Central-Cell Plasmas
in the Tandem Mirror GAMMA 10 ; May 1993

K. ltoh, S.-I. ltoh, M. Yagi, A. Fukuyama and M. Azumi, Theory of
Pseudo-Classical Confinement and Transmutation to L-Mode; May
1993

M. Tanaka, HIDENEK : An Implicit Particle Simulation of Kinetic-
MHD Phenomena in Three-Dimensional Plasmas," May 1993

H. Hojo and T. Hatori, Bounce Resonance Heating and Transportin a
Magnetic Mirror; May 1993

S.-I. lton, K. ltoh, A. Fukuyama, M. Yagi, Theory of Anomalous
Transport in H-Mode Plasmas; May 1993

T. Yamagishi, Anomalous Cross Field Filux in CHS ; May 1993

Y. Ohkouchi, S. Sasaki, S. Takamura, T. Kato, Effective Emission and
Ionization Rate Coefficients of Atomic Carbons in Plasmas; June
1893

K. ltoh, M. Yagi, A. Fukuyama, S.-I. toh and M. Azumi, Comment on
‘A Mean Field Ohm's Law for Collisionless Plasmas; June 1993

H. Ildei, K. Ida, H. Sanuki, H. Yamada, H. lguchi, S. Kubo, R. Akiyama,
H. Arimoto, M. Fujiwara, M. Hosokawa, K. Matsuoka, S. Morita, K.
Nishimura, K. Ohkubo, S. Okamura, S. Sakakibara, C. Takahashi, Y.
Takita, K. Tsumori and 1. Yamada, Transition of Radial Electric Field
by Electron Cyclotron Heating in Stellarator Plasmas; June 1993

H.J. Gardner and K. Ichiguchi, Free-Boundary Equilibrium Studies
for the Large Helical Device, June 1993

K. ltoh, S.-I. ltoh, A. Fukuyama, H. Sanuki and M. Yagi, Confinement
Improvement in H-Mode-Like Plasmas in Helical Systems, June

1993

R. Horiuchi and T. Sato, Collisioniess Driven Magnetic Reconnection,
June 1993

K. lioh, S.-I. lioh, A. Fukuyama, M. Yagi and M. Azumi, Prandtl
Number of Toroidal Plasmas; June 1993

S. Kawata, S. Kato and S. Kiyokawa , Screening Constants for Plasma;
June 1993

A. Fujisawa and Y. Hamada, Theoretical Study of Cylindrical Energy



NIFS-237

NIFS-238

NIFS-239

NIFS-240

NIFS-241

NIFS-242

NIFS-243

NIFS-244

NIFS-245

NIFS-246

NIFS-247

NIFS-248

Analyzers for MeV Range Heavy Ion Beam Probes; July 1993

N. Ohyabu, A. Sagara, T. Ono, T. Kawamura and O. Motojima, Carbon
Sheet Pumping; July 1993

K. Watanabe, T. Sato and Y. Nakayama, O-profile Flattening due to
Nonlinear Development of Resistive Kink Mode and Ensuing Fast
Crash in Sawtooth Oscillations; July 1893

N. Ohyabu, T. Watanabe, Hantao Ji, H. Akao, T. Ono, T. Kawamura,
K. Yamazaki, K. Akaishi, N. lnoue, A. Komori, Y. Kubota, N. Noda,
A. Sagara, H. Suzuki, O. Motojima, M. Fujiwara, A. liyoshi, LHD
Helical Divertor; July 1993

Y. Miura, F. Okano, N. Suzuki, M. Mori, K. Hoshino, H. Maeda,
T. Takizuka, JFT-2M Group, K. ltoh and S.-i. itoh, Jon Heat Pulse
dafter Sawtooth Crash in the JFT-2M Tokamak, Aug. 1993

K. Ida, Y.Miura, T. Matsuda, K. ltoh and JFT-2M Group, Observation
of non Diffusive Term of Toroidal Momentum Transport in the JFT-
2M Tokamak; Aug. 1993

O.J.W.F. Kardaun, S.-i. ltoh, K. ltoh and J.W.P.F. Kardaun,
Discriminant Analysis to Predict the Occurrence of ELMS in H-
Mode Discharges; Aug. 1993

K. ltch, S.-I. foh, A. Fukuyama,
Modelling of Transport Phenomena; Sep. 1993

J. Todoroki,
Averaged Resistive MHD Eguations; Sep. 1993

M. Tanaka,
The Origin of Collisionless Dissipation in Magnetic Reconnection;
Sep. 1993

M. Yagi, K. itoh, S.-I. ltoh, A. Fukuyama and M. Azumi,
Current Diffusive Ballooning Mode in Seecond Stability Region of
Tokamaks:Sep. 1993

T. Yamagishi,
Trapped Electron Instabilities due to Electron Temperature Gradient
and Anomalous Transport; Oct. 1993

Y. Kondoh,
Attractors of Dissipative Structure in Three Disspative Fluids;Oct
1993




