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ABSTRACT

For measurements of thermal diffusivity of miniature-size specimens heavily irradiated
by neutrons, a new Q-switched laser—flash instrument was developed. In the present
instrument the time resolution was improved to 0.1 ms by using a laser—pulse width of
25 ns. The realization of high time-resolution made it possible to measure the
thermal diffusivity of thin specimens. It is expected that copper of 0.7mm thick, and
SUS 304 of 0.1mm could be used for the measurements. in case of ATJ graphite,
0.5mm thick specimen could be used for the reliable measurement in the temperature

range of 300-1300K.
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1. Introduction

Thermal property changes due to heavy irradiations shouid be addressed exten—
sively, for a reliabie construction of plasma-facing components in a fusion reactor.
Among thermal properties, thermal conductivity is one of the most important and is quite
sensitive to radiation effects.[1]

In general, alarge specimen is needed to measure the thermal conductivity,
especially in so—called steady-state methods, where measuring procedures are compii—
cated and time-consuming.[2] The development of the laser—flash method has im-
proved the situations.[3] In development of highly thermally—conductive graphite in
Japan[4], introduction of the standardized method of measuring their thermal conductivi—
ty with the laser-flash technique has been very effective to evaluate developed materi—
als reliably.[4]

Nowadays, the laser—flash technique is a well-established method for measuring
the thermal diffusivity, «, with very simple procedures in a wide temperature range. The
thermal conductivity, x, is evaluated by multiplying measured thermal diffusivity, o with
the specific heat, C,» and the density, p, as described in the following.

K= pc,a (1).
The specific heat above room temperature is thought to be insensitive to small variation
of compositions of material constituents and to radiation effects. The density could be
measured easily. However, even in the laser—flash technique, the use of medium-size
specimens(10mm¢ and 2-5mm thick) is necessary.

A heavy neutron irradiation is very expensive, thus the irradiation volume is
usually limited. Furthermore, to reduce radioactivity of specimens, the specimens has to
be as small as possible. Therefore, a miniature—specimen technique is essential for the
study of heavy irradiation effects on fusion reactor materials. In this study, we devel—
oped a new laser—flash instrument which enabled us to measure the thermal diffusivity

of small specimens. This paper will describe features of the developed instrument and




show some preliminary experimental results.

2. Development of Instrument and Experimental Results

Primary target of the present research is to develop a laser flash instrument
using a standard miniature specimen, so-called TEM(Transmission Electron Microsco—
py)-disk for heavy neutron irradiations. Size of the specimen is 3mm¢ and 0.15-0.5mm
thick. In this study, we measured the thermal diffusivity of carbon-material and
SUS 304, using specimens of different sizes by the developed instrument. The obtained
results were also compared with those obtained by the conventional instrument. These
measurements were carried out to clarify that the TEM-desk could be used for the
measurement of thermal diffusivity by the present instrument.

One of the main restrictions concerning the geometrical size of the specimens is
the finite time pulse effect]5]. A half-width of its laser-pulse is 0.3-0.4ms, and a pulse
profile observed through its measuring electric circuits has a time-delay of about 1Tms
as shown in Fig. 1(a). Here, we measured a time interval between a center of the
observed energy deposition profile and the time zero, when a trigger signal which acti—
vated the laser—pulse was detected. Also, the half-width of the measured laser pulse
was 0.85ms, being about twice of that of the actual laser-puise. So, phenomena only
slower than a few tens milliseconds could be detected reliably in this system.

The response speed will be determined by response speeds of an infra-red tem-—
perature monitor and subsequent electric circuits for handling signals from the tempera--
ture monitor, and also by various time delays at electric interfaces in the system. In this
study, we tried to improve the response speed of the electric circuits. The through rate
of operational amplifiers in an amplifier circuit was increased and a time constant of the
noise filter was minimized. Also, the isolation amplifiers in the amplifier were removed.

Figure 1(b) shows the time—delay of the observed laser-pulse through the improved



electric circuits. The time-delay was improved to be 0.53ms and the observed peak had
a haif-width of about 0.5ms, which was comparable with the half-width of actual laser
pulse, about 0.4ms.

With increase of the respanse speed of electric circuits, the measured signals
showed an exponential tailing. This tailing made a peak profile asymmetric and made a
center of the energy deposition profile shift to a longer—time side. As one can see it
clearly in Fig. 1(a), the peak observed in the conventiona! instrument revealed nearly
symmetric, in contrast with that observed in the developed instrument. In the laser—flash
technigue, the initial response will be the most important and the measured tailing may
not be important, although the tailing will affect details of obtained resuits. Then, we
could examine the initial half part of observed peak profile. The observed peak position
was 0.35ms and its half width is 0.45ms, which would be about the same energy-
deposttion profile of the actual laser-pulse.

Even though we improved the response-time of the electric circuits, we still had
a limit of time resolution of about 0.5ms which came from the energy depaosition profile
of the conventional laser-pulse, Here, we tried to improve it by using a Q-switched
laser. The Q-switched laser whose half width of the energy profile was 25ns was
adopted as shown in Fig. 2. A energy-deposition profile measured in the present laser—
fiash instrument is also shown in Fig 1(c). The peak position was measured to be
0.05ms. So, in the present system, the t,, value of about 2.5ms could be measured.
From the following relation,

t, =0139% (2),
we can estimate the minimum thickness of the specimen, L. Using thermal diffusivities
at room temperature, the following thickness was estimated; 0.5mm, 0.1mm, 0.7mm,
and 0.6mm for ATJ-graphite, SUS 304, copper, and aluminum, respectively. These
values are well near the range of thickness of specimens irradiated in high flux reactors,
up to high neutron doses.[6] Figure 3 shows measured temperature increase of highly

conductive grassy carbon, GC-SS-J developed by Toyo Tanso Co Ltd., whose thick—




ness was 0.535mm. The measured temperature increase had a half time, o, of
0.63ms, which was far out of the time-resolution of the conventional laser—flash instru—
ment as described above.

Figure 4 shows measured values of thermal diffusivity of SUS 304 at room
temperature as a function of specimen thickness. The diameter of the specimens was
3mm. The diffusivity of 0.0391cm?/s is measured by a conventicnal laser-flash instru-
ment for this specimen. Obtained values are well within + 10% of the recommended
value in the range of thickness of 0.5-1.5mm. These values were obtained from the
measured resulis, using the so-called t,,, method[3].

Thet,, method has many advantages but at the same time it has some set—
backs caused by deviation of the measuring system from the theoretical descriptions.[7]
The thicker specimens showed the larger thermal diffusivity as shown in Fig. 4. This
implies that the heat flow parallel to a specimen surface and the inhomogeneous spatial
distribution of energy of laser-flash will be its cause. The present laser flash was found
to have inhomogeneous energy deposition profile as a result of attempt to focus the
laser beam to a limited area. This attempt was done to increase spatial—density of the
deposition laser energy, because the Q-switching initially caused decrease of the
spatial energy density from about 6-10J/pulse to less than 1J/pulse. The specially
designed specimen holder to shield the strong noise from the Q-swiiched laser wouid
have also increased the heat flow parallel to the specimen surface.

More sophisticated analysis than the t,,, method will improve the situation, as the
present system has a better time-resolution.[8] We preliminarily attempted to apply the
so—called logarithmic slope method.[8&9] The obtained results are shown as closed
diamonds in Fig. 4. Some improvement could be seen. However, further and detailed
analyses must be needed to improve the present measurements.

Temperature dependence of the thermal diffusivity of 1 mm thick SUS 304 was
measured on the specimens of 3 and 6mm¢. The results are shown in Fig. 5, which also

shows the results obtained on the 0.5mm thick specimen of 6mm. In general, the ob-



tained results fit the recommended value well within + 10% scatters. The trend that the
present measuremernts gave higher thermal diffusivity at elevated temperature may be
also due to the heat flow parallel to the specimen surface especially enhanced at ele—
vated temperatures. Results that the 0.5mm thick specimens showed better fitting also
support this speculation.

In general, the developed instrument could measure the thermal diffusivity of
very thin specimens in a wide temperature range. However, we have one serious set—
back. The present laser has a power of about 1J per one pulse, smaller compared
with the value of about 6J of the conventional instrument as shown in Table 1.
However, the 25ns pulse means the energy power of 4x107W, far larger than the energy
density of 2x10*W of the conventional laser-flash instrument.

Optical radiation of such a high density laser pulse caused some surface modifi—
cation, especially on the relatively low-melting point materials. Also, due to the high
power pulse, the temperatures involved lead to a non linear behavior of heat transfer,
resultantly, the data reduction method such as t,», method would not be used. The
change of surface conditions sometimes caused serious scatter of measured values.
Some carbon-based materials showed increase of scatter with increase of number of
measurements. Improvement of sensitivity of a temperature-monitor and optimization

of time—-width and strength of the laser—pulse will be needed.

lli. Conclusion

A new Q-switched laser—flash instrument was developed for the measurement
of thermal diffusivity of specimen having miniature-size suitable for neutron irradiation.
The present instrument realized the time resolution better than 0.1 ms with a laser—
pulse of 25 ns wide. Realization of measurements with a high time—resolution made it
possible to measure the thermal diffusivity with thin specimens. It is expecied that

copper of 0.4mm thick, and SUS 304 of less than 0.1mm could be used for the




measurements. In case of the ATJ graphite, 0.3mm thick specimen could be used for
the reliable measurement. The preliminary measurements confirmed that the developed
instrument could measure the therma! diffusivity reliably in the temperature range of
300-1300K, with the miniature specimens.

However, serious surface modification took place due to the deposition of high
energy density, 1x10%J/s, laser on measured specimen, which disturbed the measure—

ments. Further optimization of the system will be needed.

References

[1] M. Rohde and B. Schulz, STP-1125 (1992) p. 764, ASTM, Philadelphia.

[2] J.E.Parrot and A.D. Stuckes, Thermal Conductivity of Solids,(Pion, Londan, 1975)

p. 12.

[3] W.J. Parker, R.J. Jenkins, C.P. Butler and G.L. Abbott, J. Appl. Phys. 32 (1881}
1679.

[4] T. Yamashina edited, Overall Characterizations of Graphites as Fusion First Wall
Material and Evaluation of the Stability Against Plasmas, Interim Report by Fusion First
Wall Material Research Group, Nuclear Fusion Research Project, The Ministry of
Education, Science and Culture, (Hokkaido University, 1989).

[5] J.A.Cape and G.W.Lehman, J. Appl. Phys. 34 (1963) 1909.

i6] A. Kohyama, FFTF CYCLE-11/MOTA-2A, LIST OF JAPANESE SPECIMENS,
Research Group of Monbusho-DOE Coilaboration in Fundamental Studies of Irradiation
Effects in Fusion Materials Utilizing Fission Reactors (Unv. of Tokyo, 1982).

[7] R.E. Taylor, Rev. Int. Htes. Temp. et. Refralt.,, 12 (1975) 141.

[8] T. Baba, Research Report on innovative Trends of Metrology, Nat. Res. Lab. Metrol-
ogy of Jpn Report, Tsukuba, (Nat. Res. Lab. Metrology, 1985) p. 119.

[9] Y. Takahashi, K. Yamamoto, and T. Oosato, Netsusokutei 15 (1988) 103.



Table 1. Specifications of conventional and developed laser-flash instrument

Conventional Developed

Width of laser pulse 300 - 400 ps 25ns
Laser energy per pulse 6-10J 1-154
Diameter of homogeneous

. 10 mm 6 mm
energy profite of laser pulse
Respgnse ?ume: of measuring about 1 ms about 0.05 ms
electrical circuits
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Fig. 1

Measured time-profile of laser-pulse.
(a) Conventional instrument,

(b) Developed instrument with normal laser-pulse,

{c) Q-switched laser-pulse.
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Fig. 2

Energy profile of Q-switched laser-pulse.
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Fig. 3

Measured temperature change on GC-SS-J of 0.535 mm thick.
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Thickness dependence of measured thermal diffusivity on 3 mmo specimens;

closed square; obtained by the t; ,method,

closed diamond; obtained by the logarithmic slope method.
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Temperature dependence of thermal diffusivity measured on specimens;
open circle; 3 mmé and 1 mm thick,
open diamond; 6 mm¢ and 1 mm thick,

closed diamond; 6 mm¢ and 0.5 mm thick.
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