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ABSTRACT

A Monte Carlo simulation code has been developed for studying ICRF mi-
nority heating in heliotron/orsatrons, which includes complicated orbits of
high energetic particles, Coulomb collisions, interactions between the par-
ticles and the applied RF-field, and the self-determined radial electric field
in the finite B equilibrium. Calculations have been carried out using the
code to study physics of ICRF minority heating in heliotron/torsatrons tak-
ing the Large Helical Device as an example. The radial electric field is self-
consistently determined taking into account orbit loss of accelerated minor-
ity ions. Common characteristics of physics of ICRF minority heating in
heliotron/torsatrons, such as effects of finite 5, location of resonance layer,
finite &y, localization of the RF-field, minority species, and the radial electric
field, are clarified.

1. INTRODUCTION

Experiments of ICRF heating have been carried out (Heliotron-Ef1,2],
ATF[3], and CHS{4]) and the possibility of this heating method in heliotron/
torsatrons has been demonstrated. We expect that the ICRF heating will be
a powerful means to heat the plasma of the Large Helical Device (LHD) [5].
We are developing ICRF heating antennas for the LHD with output power of
12MW (10 seconds) and 3MW (steady state). The frequency f can be varied
from 256MHz to 95MHz to realize a variety of ICRF heatings. We install
the antennas for fast-wave heating near the helical coil on the larger major
radius side where the plasma cross sections are vertically elliptic. The two
ion-hybrid resonance is located in the central region of the plasma when f =
45MHz and B = 3T, and direct electron heating can be possible through mode
conversion. Minority heating (H or *He) is also possible when the minority
concentration is small. If the frequency is raised, only ion heating takes place
in a similar way to low-field-side launching in tokamaks. For f = 54MHz and
B = 3T, the resonance surface is located only on the inside of the torus and
trapped particles heated by the RF-wave would be localized and less particle
orbit loss may be expected.

In heliotron/torsatrons, the magnetic field configurations are so compli-
cated that the orbits of high energetic particles deviate largely from the mag-
netic flux surface. The field configuration becomes more complicated as the
plasma £ value increases to enhance loss of trapped particles. Accordingly,
it is necessary to perform an orbit following/Monte Carlo simulation to take
into account, orbit effects correctly in studying ICRF Leating.



In this paper we study physics of ICRF heating of the plasma in he-
liotron/torsatrons taking the LHD as an example using the Monte Carlo sim-
ulation code, MOMOCO, in which finite j effects, complicated orbits of high
energy particles, Coulomb collisions, interactions between the particles and
the RF-field, and the self-determined radial electric field, are included(6,7].
The effects of the finite k) and &, are also included in this study.

The LHD is a helical system with L = 2 and M = 10 heliotron/torsatron
configuration, where R = 3.9m, @, = 0.55 ~ 0.66m, o = 0.1 (« : the pitch
modulation parameter of the winding law), and 3% = 1.25 (3%: the pitch pa-
rameter). We, here, use the LHD configuration called “the standard con-
figuration”, in which the shift of the vacuum magnetic axis position, A, is
—0.15m (0.15m inward shift) and the toroidally averaged magnetic surfaces
are nearly circular in the vacuum field. This configuration satisfies the re-
quirements for high plasma performance, i.e. a good bulk particle confine-
ment, a high plasma £, and ereating a divertor configuration.

Using the vacuum magnetic field configuration, we solve the three di-
mensional finite § MHD equilibrium by the VMEC ccde[8] under the fixed
boundary condition and P = Py(1 — w/y)?. And we study the effects of the
fimte S on the ICRF minority heating based on the obtained MHD equilib-
rium.

Effects of the radial electric field is also studied. In helical systems the
radial electric field, E,, much affects particle motions not only at the plasma
periphery but also near the center of plasmal9,10]. Some of trapped high en-
ergetic minority ions accelerated by the RF-field may escape out of the last
closed magnetic surface, making the large particle fiux in the radial direc-
tion. This must contribute to create the radial electric field together with
majority ions and electrons. The radial electric field will be determined self-
consistently including escaping energetic minority ions.

2. EFFICIENCIES OF ICRF MINORITY HEATING

We perform a large number of simulation runs changing the plasma 5,
the strength of wave electric field, Egr, and the position of resonance layer.

The velocity and pitch angle of minority ion are changed due to the in-
teraction with the RF-wave and the transition of particle motions from un-
trapped to trapped or from trapped to untrapped occurs. Figure 1 shows
typical trajectories of a selected minority ion during the caleulations includ-
ing collisions and interactions with the RF-wave for two different £ values;
(@) fy = 0.0% and (b) £ = 6.0. The radial electric field is not contained. The
transition of the particle motion due to the RF wave can be seen. Addition-
ally in the case of £ = 6.0 the loss of the minority ion is found because of the
configuration changes due to the finite beta effects.
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We next show the finite £ effect on the heating efficiency of the ICRF mi-
nority heating. We define the heating efficiency by Pirans/Pops where Pirans
and Pz, are the transferred power from the minority ions to the background
plasma and the absorbed power from the RF wave to the minority ions, re-
spectively. We set Z,4+ = 1.0 and the parameters at the plasma center as
ng = 1.0x102%m2 T,; = 1.0keV, and Tjq = 1.0keV. And we assume the
H or 3He minority ion and 3% of the minority ion fraction. Figure 2 shows
the plots of heating efficiency versus Pgs. The strengths of the resonance
magnetic field are set to the value at the magnetic axis. The absorption
power is changed by changing the RF electric field on the resonance layer
from Egp = 1.0 x10°V/m to Epp = 3.0 x 10?°V/m in this Figure. In the case
of By = 0.0% (H minerity), the heating efficiency is 92% for Py, = 2MW and
decreases monotonically with increasing in Pyy,. For finite S values (f = 4.0
and 6.0%) the heating efficiencies are around 70% when Pz, < 5MW. How-
ever, no remarkable differences in heating efficiencies are found for differ-
ent f values (f = 0.0, 4.0, 6.0%) in the region of high absorption power
(Pops > BMW). It is found that the heating efficiencies for *He minority cases
(open circles, triangles, squares) are up to 30% higher than those of H minor-
ity cases. And the large increase in the transferred power to majority ions is
found in the 3He minority case.

The radial profile of the transferred power from accelerated minority ions
to majority ions and electrons, or deposition profile, is different for a finite
plasma from that of a vacuum plasma. In the case of fy = 0, the deposition
profile has a peak near the center and decreases roughly menotonically with
the plasma radius. On the other hand the second peak appears near the
plasma periphery as well as near the center in the case of iy = 6%. This fact
shows that the deposition profile changes for the finite Splasma is attributed
to the topological change of the trapped particles. Deeply trapped particles
(contour of mod-B,,;,) has a bean-shaped trajectory because of the finite §
effect.

The influence of the position of resonance layer on the heating efficiency
is also studied changing the applied wave frequency. In the case of f =
0.0% the heating efficiency does not change so much even if B.(= 27fm/q)
deviates from B,;,. But the transferred power to majority ions and electrons
decreases at the center region. In the finite § case the heating efficiencies
are reduced if the position of the resonance layer is moved from the layer
with Bres = Bags. The maximum heating efficiency can be obtained when the
frequency is adjusted to the magnetic field strength at the axis.

The inclusion of the finite &) does not change the heating efficiency so
much and the small degradation of the heating efficiency is found in the
large k| case. However the small increase of the heating efficiency (~ 10%)



can be seen when the multiple %, waves are applied.
3. SELF-DETERMINED RADIAL ELECTRIC FIELD

Since energetic minority ions due o interactions with RF-fields have a
large gyroradius and drift velocity, their particle flux across the flux surface
has significant effects on the radial electric field, which is determined by the
ambipolar condition. Here, the equation determining the radial electric field
in the presence of the fast ions {energetic minority ions in the present case)
is proposed. The main assumptions for the background thermal species are
1) the standard small gyroradius ordering, 2) the transport ordering, 3) the
drift ordering, 4) no inductive electric field, and 5) the fast time variation of
the radial electric field in comparison to the background density and pres-
sure.

Finally, we treat effects of the fast ions on the thermal species as the ex-
ternal forces. Since the behavior of the fast ions is calculated by the Monte-
Carlo simulation, the effects of the fast ions enter the final equation as the
radial flux and the Coulomb interaction (friction) with the background ther-
mal species in terms of the external force. Note that the inductive electric
field is neglected. As a result of it, we have the following equation in the
Boozer coordinate system (y; 4 ):

J (dP
a0l + &) {IVyf?) = (d—{f) =eTf+Y el¥+Y Rus (1)

where the summation is taken only for the thermal species, and F}" is the

radial flux of the fast ions and I'Y is the radial fluxes of the thermal species a

due to the 1/vripple diffusion. Note that I'Y (= (nfds - Vy)) includes the fast

ion particle loss. The residual term ¥, R, is the Coulomb frictional flux of

the fast ions with thermal species and is neglected in this calculation.
Other quantities are defined as follows:

<|Vw12> . <g2 (J%_C; 'I%%» 2

= X (2)
vs (zﬁ) (IVl?)
Ui = _._L (3)
>0 Mallg Ly

The functions G and g3 are given as the solutions of the following equations:

E.vo _ L{@_ }

VE| P
= 1

4

{4)

(vs11
<]
PN
by %
R
|



Both are determined only by the magnetic field configuration.

We study the ICRF minority heating for the LHD including the self-
consistent radial electric field. We use Eq. (1) for the time development of
the radial electric field E,. We calculate the radial particle fluxes for elec-
trons and majority ions, I'Y and I}, respectively, using the neoclassical diffu-
sion theory. The radial flux for energetic minority ions F}” is ealculate by the
present Monte Carlo simulation code MOMOCO. Figure 3 shows the time
development of the radial electric field during the ICRF heating. The calcu-
lation parameters are the same as in Fig. 2. We find an enhancement of the
strong negative radial electric field at the periphery due to the radial flux
of escaping energetic minority ions out of the last closed surface and E, is
larger for higher £ plasma because of the large loss region of high energetic
ions. Moreover, it should be noted that the neoclassical ion flux can become
inward at the plasma periphery as the radial electric field increases as seen
in Fig. 4.

Thus the possibility has been shown that the large electric field enhanced
by loss of energetic ions can control the plasma transport. To investigate the
influence of energetic ions on the profile of majority ions and electrons, the
simulation is carried out incorporating a transport code with the present
Monte Carle code.
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FIGURE CAPTIONS

FIG. 1. Typical orbits of minority ions in the ICRF heating for two different
plasma f configurations: {(a} 5= 0%, (b) 5= 6.0%.

FIG. 2. Heating efficiencies as a function of the absorption power changing the
plasma f and minority species (H and $He).

FIG. 8. Build up of the radial electric field including the flux of energetic mi-
nority ions (S = 0.0 and 6.0%).

FIG. 4. Radial particle fluxes for electrons and majority ions. The inward ion
flux can be seen at the plasma periphery.
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