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Abstract

Acceleration and energy gain of a relativistic charged par-
ticle in the field of a cnoidal wave with slow variation in am-
plitude is discussed. It is shown that solitary waves are more
effective in imparting energy to a charged particle than the

usual sinusoidal waves.
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An efficient way of particle acceleration is to exploit the
large electric fields associated with longitudinal electrostatic
waves. Since the phase velocity and the accelerating electric
field of these waves are in the same direction, it is possible to
‘phase-lock’ a beam of injected particles and accelerate them
to very high energies. The large amplitude electric fields necce-
sary for such a purpose can arise naturally in plasmas owing
to its ability of supporting space charge waves with relativistic
phase velocities. This concept has lead to extensive theoreti-
cal investigations on plasma-based accelerators such as plasma
beat wave [1,2] and wake field {3,4] accelerators.

While studying the problem of acceleration of particles by
waves, a realistic approach would be to consider a localized
wave packet where the amplitude of the wave has a slow spa-
tial variation. If the flight time of a particle across the wave
packet is much greater than the bouncing time, the particle will
be trapped within the potential field of the wave. In the phase
space, trajectories of trapped particles correspond to closed
curves lying within a region bounded by separatrices, while
those of untrapped particles correspond to open curves lying
outside the separatrix. For a localized wave packet, particles
moving in the wave field experience a slow variation in wave
amplitude. When the amplitude of the wave increases, the
trajectory of an untrapped particle in phase space crosses the
separatrix to enter the srapped region and when the amplitude

of the wave decreases, the phase space trajectory once again




crosses the separatrix so that the particle becomes detrapped.
To analyze the motion of particles under such a situation, one
should conveniently take a recourse to the adiabatic theory and
formulate such wave-particle interaction processes. When the
particle orbit in phase space CT0sses a separatrix the adiabatic
assumption is violated because of the divergence of particle’s
bounce period. The change in the adiabatic invariant assoCk-
ated with the crossing of the separatrices by the particle trajec-
tory in phase space can be related to the corresponding change
(gain or loss) of the particle energy.

The acceleration of charged particles both in the nonrela-
tivistic and relativistic sinusoidal waves in the adiabatic limit
has been studied both analytically and numerically [5 - 7).
However, such investigations in the fields of waves other than
sinusoidal are rather scanty. Since nonlinearity in wave prop-
agation is an lmportant occurence in physical processes of the
present day plasma physics, particularly in the context of large
amplitude waves being considered {8], it is rather imperative to
investigate explicitly the energy exchange between the charged
particle and & wave which is governed by a nonlinear equation.
In this paper we have developed the adiabatic theory of elec-
tron acceleration in a relativistic cnoidal wave and a solitary
wave with sech? type profile.

The wave field solutions of several nonlinear equations such

as nonlinear Schrodinger equation can be modelled [9] by the



following expression
y=Acn({]x) (1)

The symbol cn(£ | x) stands for a Jacobi elliptic function [10]
with { =z —vf, and & is a parameter with 0 < k < 1.
The periodicity length of y as a function of variable £ is given
by 4K (k), where K is a complete elliptic integral of first kind.

Two important limits of the above solution are

y — Acosé and A{k) — /2 for k=0

which corresponds to the usual sinusoidal wave and

and K{k)— oo for x — 1

y-—-—)

cosh &
which is a soliton like solution.

The relativistic Hamiltonian of an electron interacting with

the wave is given by

H{g.p,t) = /P2 + mic* — m.c” + A(q) crl{kg —wi | &) (2)

where, m, is the mass of the eleciron, p, ¢ are its momentum
and position respectively. A(q) is the slow space dependent
amplitude of the electrostatic potential, A = keE /m.w? where
e 13 the charge of the electron, & is the wave number and w is
the wave frequency.

To investigase the motion of the electron in a wave packet

with slowly varying amplitude in the adiabatic theory [11], we




make transformations, as in Bruhwiler and Cary [6], so that
g becomes a ‘temporal coordinate’ and § = kg — wi (position
in the wave frame), becomes a position coordinate. With this
transformation, the new momentum py and the corresponding
Hamiltonian Hy become,

H k

pe=—, Hy=—H—p=Fkps—p (3)
W )

From egs. (2) and (3) we get,

p= i\/%[wpe — A cen(f | &) + mec?]? — m2c? (4)

so that,

1
Hy = kps F \/;[wpg — Acn(f| &) +mee?2—m2e® (3)

In the following, we comsider the minus sign in Eq. ({3)
which corresponds to particles going in the same direction as
the wave.

To determine the separatrices in the § — ps phase space,

we first obtain the fixed points from the following equations:

a8 8H9 dpe aHB
dg  Ope 0 dq o8 (6)

So the saddle points in phase space, as obtained from egn(6),

are given by:

)

-]

sn(f]x)=0,1e at §=0,4K, ... (



The values of momenta py, and Hamiltonian Hy, at the
saddle points defined by eq. (7) are given by the following

expressions:

_mew I3 A
Pos = — 5~ T, +1 +w (8a)

Mew L kA
Hpy = -2 "2 52 b
0s k T2l w (86)

where, T2 = 1/(1—§2) and 8, = w/ke, is the relativistic factor
associated with the wave phase velocity w/%.

From the above expressions it is explicit that the saddle
points (and the separatrices) are functions of the slow ‘time’
variable ¢g. In order to make way for the application of the
separatrix crossing theory [12] we should make a canonical
transformation which would render the fixed points ‘station-
ary’ (i.e. independent of ‘time’ q) in phase space. Following
Mora [7], a canonical transformation from (6, ps) to (@, ps) such
that p, = 0 at the saddle points and H; = 0 on the separatrices

is obtained through the generating function of Fj type:

mew T
k2 Tp+1

A e ¢ fmew T kA
+ 5/ en(8 | m)dé + [ ( k rp+1—?) dd

(9)

The Hamiltonian H, in the new (o, p,) coordinates may be

FQ(pQD’ 31 Q) = p¢9 +

written after some algebra as




mewlp m2w?

F K2

2+ 2mewl'pps + kK232

(10)

k
H¢=kp¢—’—‘B+

with B = A[l —cn(¢ | k)]. We can then obtain the expressions
for (pe)s, the values of ps at the upper and lower branches of

the separatrix by putting H, = 0 and solving for py. We get

1f the amplitude of the wave is a constant, the motion of
an electron in the (& — ps) phase space is confined to lines of
constant Hamiltonian. Due to the dependence of the amplitude
on time, the Hamiltonian is no longer an integral of motion and
hence the phase trajectories also change in time. However, due
to the slow variation of amplitude with time, transition from
one trajectory to another is governed by the conservation of the
action integral for the untrapped particles. The action integral
is defined by

4K

Te= [(a)s o (12

0
where (p,)= is defined by eq. (11). It is convenient t0 express

the electron energy in terms of the relativistic expression T

defined by T = (4/p*c® + m2c?)/m.c?. so that.

[Biﬁm/B?%—QFEk s (13)
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where the wave amplitude is appropriately normalized. For the
case of solitary waves, we take the wave electrostatic potential
in eq. (2) as Alq) sech®(kg — wt), so that the upper and lower
bounds of electron trapping energy given in eq. (13) can be

worked out exactly to yield

. oo [, 24
Ti=T,+TA£i0, A%+ ™ (14)
P

So for the electron to be trapped, the upper and lower bounds
of I for a given value of the maximum amplitude of the wave

Ag are

I_(Ag) <T < T4 (4y) (15)

where ['1(Ag) is the value of I'y at the maximum amplitude
of the wave. Those particles whose initial energies T'; are such
that I'; < I'_(4p) or I'; > ['1{Ag) do not interact and exchange
energy with the wave.

We would like to calculate the energy gain (loss) of an elec-
tron which enters the region bounded by the separatrices from
below (above) and finally leaves that region from above (be-
low). In these conditions, the energy variation mechanism is
related to the breaking of the adiabatic invariant as the parti-
cle trajectory crosses the separatrix. The amplitude A = A,.
at the instant at which the particle is trapped, is such that

4K

Ji(Az) - (i =1y




When the amplitude increases from A $0 its maximum
value Ap, the particle remains trapped. The particle is again
detrapped when the amplitude decreases from A to 0 at the
same value of A = A,. Tt is evident from egs. (13) and (14) that
the energy of the particle, I, consists of two branches. A net
energy variation of the electron can occur if during the course
of transition, the trajectory starting from branch I' = I ends
on 3 different branch I' = T'y, where I's and T, are two solutions
for T'. This implies a double crossing of the separatrix at the
same value of A = A,. The adiabatic invariant breaks at each
crossing of the separatrix and remains constant during each
stage of motion. The energy variation of the particle during a
transition is then given by the variation of the action integral

as AT = wAJ/4K. Using egs. (11) and (12) we get

o 41K
Iy —Jo) 2B, B
AP = o) T [ B +o=dp  (16a)
iR i VT,

and for the solitary wave

AT = 2028,/ 42 + 24/T, (16b)

The energy change averaged over initial electron phases can

be expressed as (AI') = PAL, where P represents the prob-
ability of transition to different regions of phase space. The
probability [13] can be computed in terms of time variation
of the area of phase space regions bounded by the separatrix
determined at the instant when the crossing of the separatrix

occurs for a uniform distribution of particles in the phases of

9



motion. Eqs. {16) give the energy change of an electron of a
given energy during a transition of the wave packet.

We next proceed to determine the average energy gain of
an electron. The average absorbed energy normalized by m.c?

can be written in the following form

T+(Ap) [dT
E= / PAT(T) —es (17)
F'_(Ag)

where f(I') is the one dimensional relativistic distribution func-

tion (normalized t0 unity)

(14+pT)e

= 25 () e
where 1 = m.c®/ksT, and Ko(u) denotes a modified Bessel
function of the second kind with index 2 and argument p. We
note that the trapping condition as well as the absorbed energy
E depend only on the maximum amplitude of the wave elec-
tric field and not on its profile, provided that the adiabaticity
condition for the particle motion is mes.

For a given value of the maximum field amplitude A, the
energy variation AT is non zero only for a set of initial energies
defined by eq. (15). By means of eq. {17) the average energy
gain of an electron is reduced to an integration. The equation
gives the average absorbed energy by means of three essential
ingredients : the range of energy values arising out of the trap-
ping condition given in eq. (15), the energy change during a
transition which depends on the initial energy of the particle

(energy change AT depends implicitly on the initial energy as
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dictated by egs. (13),{14) and (16)}, and the transition proba-
bility P. The integral given in eq. (17) s evaluated numerically.
Fig. 1 shows some results for the average energy gain E for
i = 2.0 and normalized value of Ag = 0.1 as a function of T,
for different values of x and for the sech? type wave packet.

Tt is found that for a given ', the energy gain increases with
% and thus the cnoidal wave is more efficient in transferring
energy to a charged particle. However, for a solitary wave,
the gain of energy by a particle is much higher than that in a
croidal wave (even when x = 0.9). The singular behaviour of
the solitary wave in transferring energy to a charged particle
can be explained in the following way:

As stated above, the average energy gained by a charged
particle depends on three factors ; i) the trapping coudition
giving the range of initial energy for which the particle will
be trapped, ii) the energy change during a transition, (AT)
and iil) the transition probability. For a solitary wave (in the
limit & — 1), the trapping condition defined by eqn (14) and
(15) produces an increase in the range of trapping energies and
thus causes a larger number of particles to participate in the
wave particle interaction (through the factor e T} A compar-
ison between the range of energies for particles participating in
the wave particle interaction can be made {rom eqn(13) and
(14). For cnoidal wave {x = 0.9), I'- = 2.4 and 5.1 forI'y =5
and 20 respectively; whereas for solitary wave the correspond-

ing values are 2.0 and 3.5. The lower values of T'_ causes the
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numerical value of the probabilty distribution factor e I to in-
crease, for solitary wave; ( a two fold increase at [, = 5 and an
almost tenfold increase at ', = 20). Physically, this indicates
that more number of particles {with lower initial energies) are
involved in the wave particle interaction for solitary wave.

Moreover. for solitary waves with larger values of [, the
decrease in the probability distribution function e ! (due to
an increase of I'_, the lower bound of trapping energy) is ad-
equately compensated by the increase in the single particle
energy gain AL, so that the average energy gain does not vary
much with I',. On the other hand, for cnoidal waves, the num-
ber of particles interacting with the wave with energies in the
neighbourhood of I'_ is too small for larger value of T, (as ['—
attains a higher value for higher I';) so the average energy gain
decreases with the increase of T',.

However, an important point regarding the validity of adi-
abatic approximation for the solitary wave should be made ex-
plicit. As x — 1, the periodicity length increases causing the
bounce frequency wjy of the trapped particle to decrease and
the adiabatic approximation breaks down for a wave packet of
solitary wave. In this case the merit of this investigation could
perhaps be advocated by stating that this anlysis of the en-
ergy exhange between a charged particle and a solitary wave
(where the solitary wave can be regarded as a limiting case
of a cnoidal type of wave) gives a basic understanding regard-

ing the efiiciency of different spatially adibatic waves in trans-
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ferring energy to particles. Moreover, in a realistic situation,
collisions, fluctuations or neoise present in the system scatter
resonant particles more rapidly than w; ', so that the trapped
particles are scattered out before a complete period of oscilla-
tion. So these results are relevant for the interaction of charged
particles with spatially varying large amplitude wave packets.
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Figure Captions

Fig. 1. Average energy gain of an electron versus I', for (a) &
= 0.0 {b}x = 0.5 (¢) k = 0.9 (d) sech? wave with normalized

amplitude of the wave 4y = 0.1
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