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Abstract

Nonlinear magnetosonic waves propagating perpendiclarly to
a magnetic field are studied in two—ion plasma. It is shown
that high frequency magnetosonic wave under the influence
of finite cut—off frequency is described by an extended
K-dV equation, rather than conventional K—dV equation.
Modulational stability of this mode is strongly affected by

the finite cut—off frequency in two—ion plasma.
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. Introduction

Nonlinear magnetosonic waves have been actively studied
because on the one hand they play an impcrtant rolie on
particle acceleration and heating of plasmas, on the other
hand its nonlinear behaviour is an attractive subject from
viewpoint of nonlinear wave phencmena. For a plasma with one

ion—species, the linear dispersion relation of a magnetosonic

wave propagating perpendicularly to a magnetic field is given

as

w = kV, —ak’, )

where the wave number k is assumed to be in the range
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Here, va is the Alfvén speed, ¢ the light velocity. @ @

the electron (ior) plasma frequency. respectively. and the

coefficient a in Eq. () will be given explicitely later

It is well known that the nonlinear evolution of a magneto-

sonic wave in a plasma with one—ion species is described by

the Korteweg—de Vries dVW equation[l, 2] . For muti—ion

plasma, the dispersion relation may be modified and particu-

larly. the magnetosonic wave in case of two ion—species 1s

split into two modes., namely. the high— and low—frequency

modes. Recently, Toida and Chsawa [3] discussed the nonlinear



evolution of these magnetosonic waves {{ropagating perpendicu-
larly to a magnetic field in the plasma with two ion—species.
and asserted that the high—frequency mode is described by

the K—dV equation. although the dispersicn branch of high
frequency mode has a finite cut—off fregquency. The ordering
k~ €' &)
is applied in the analysis based on the reductive perturbation
method. But., this does not always request that the dispersion
relation is regular at k=0.

We should note that the dispersion relation and its
phvsical process sensitively depend on the ordering associated
with the smallness parameter m M . which is a measure of
electron—to—ion mass ratio. Although Toidz and Ohsawa deriv-

ed the K—dV equation for the magnetosonic wave under the

following ordering for m.Mm: with smallness parameter ¢

1, ;
— ~ &, &

it should be noted that the effect of finite cut—off fre-
quency is not correctly involved in the wave equation, There-
fore, we have to pay attention to the scaling and ordering
with respect to m M to discuss accurately the influence of

finite cut—off frequency cn the high frequency magnetosonic

wave, If we assume the ordering
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n,

the high—frequency magnetosonic wave under the influence of
finite cut—off frequency in the plasma with two ion—species

is described by the following dispersion relaticon

w = kV, —ak“+§, ®

where b tends to zero in case of the single ion species and
the explicit form of b will be given later. We note that the
nonlinear magnetosonic wave on the basis of the dispersion
relation ) can not be described by a conventional K—dV equ-
ation based on the dispersion relation (D .

In this paper. we apply a proper ordering and scaling
he mass ratic mein and derive a nonlinear
wave equation describing nonlinear magnetosonic wave under
the effect of finite cut—off frequency on the basis of a
fluid equations for a two—ion Dlasma.

In section 2. we discuss the linear dispersion relation
for the high frequency magnetosonic wave under the effect of
finite cut—off frequency, and show that its nonlinear be-
haviour can be described by an extended K—dV equation rather
than K—dV equation. In section 3. we reduce this wave equa-

tion to the nonlinear Schrddinger type equation by using the

reductive perturbation method and examine the propagation

characterics of this mode. In section 4. we will have dis-



cusions on a stationary solution. The last section is devoted

to the summary.



2 Derivation of Model Equation

2. 1 Basic eguations

We here study a magnetosonic wave propagating in the
x-direction perpendicular to a magnetic field B =37

on the basis of following fluid equations with two ion—sbecies:

on.
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where the subscript j refers to ion species (two ion species
j=a and b) or electrons (j=e), m; is the mass. q the charge,
n; the number density and 17j is the velocity. Since we con-

sider the magnetosonic wave propagating in the x—direction

perpendicular to 5. we should note 8/3y = 879z =0 in

Egs. M-40 .
2. 2 Linear Dispersion Relation

[f we assume € Q% @ is the electron cyclotron frequ-

ency) and neglect the higher order terms with respect to the



smallness parameter m ., the linearization of Egs. D -uam

yvield the dispersion relation
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where @, and & refer the plasma frequency and cyclotron fre-
res-

querncy for ion species {(j=a and b) and electrons (=e .

pectively, For the very small wavenumber.
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on the other hand. in the region of the wavenumber

L 2
o ko> 2

¢ C

we obtain an approximate dispersion relation in the following
form

2 9 2
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Comparison between Eq. ) and Eq. (I3 gives the coefficients

a and b as
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2. 3 Nonlinear Wave Equation

We now derive the model equation for nonlinear magneto-
sonic wave characterized by the dispersion relation (’6). by
using the reductive perturbation method. We here introduce
the following stretched space—time variables

E=g? (x—Vt), =% 1 as



and also suppose

M. 5
£,

i1,

instead of the assumption . We then expand the plasma vari-

ables as
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Here we note that the expansion of these plasma variables de-
pends sensitively on the ordering of m.m. Substituting Egs.
(20a) — Q20D with Eqs. {® and {9 into the set of fundamental
equations M — U, we finally arrive at the nonlinear evolu-
tion equation for magnetosonic wave under the influence of
the finite cut—off frequency in the fomm of an extended

K~dV equation

g .ou cu  du, o
—(—+fu—+y=—=}—-ou=0
2 {c'f o< ag‘} , @D

- 7. 2 o 2 -
IB _i a);d (C‘)pa Q.’.’ ! C)pg Qg) 7 _- C-V (2 )
= £ RN z 2
2 Q. +e,7) la,,
2,12 2 2
d= V B @ (Q,-Q ){(z)_m N Doy ©3
2 1 2 74
2c (C’)pa '_a);b Qa Q_b"
2 ] 2-1— s -
2= 2 Q] @ 78,7 eZy
3 il ’
Q)Fd (L)pcr

where O (G=a b & 1is the cyclotron frequency for j—th spe-
cies and we put u«=v M . If we neglect the é—tem in

Eg. @D ( this case is realized in a2 plasma with one—ion spe-
cies in which & tends to zer® ., equation (21 reduces to
so—called K~dV equation, which has been discussed by Toida
and Ohsawa. In the present paper, we restrict our discussions
to a case with small but finite k ( see, Egs. (D and (I8)) be-

cause Eq. @1) appears not to be valid in the long wavelength

limit, which 1is seen from Eq. (B We note that



the characteristics of Eq. @1 sensitively depends on the
competing effect between 7—and d—terms and this situation
is essentially different from the previous results [3].

We here discuss some property of Eq. @1 compared with the
K—dV equation. When we consider a periodic solution or a
solution which tends to zero for [£l— e, we obtain the fol-

lowing boundary condition by intergrating Eq. QL with re-
spect to &,

J‘ud§= Q,

o),
which is different from the conventional boundary condition

for the K—dV equation. [f we introduce a new variahle ¥

through
d*¥
U=
d&* ¢4
eqation @10 reduces to the following nonlinear equation
gu  du d e
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Furthermore, the substitution of Eq. 28 into Eq. @7 yeilds

the following equation

When we regard Eqs. @7) and Eq. @8 as the coupled equations,



these represent the two wave interacticn process between y
and ¥. Although K-dV equation has infinite number of con-
served quantities[d4, 5j. it seems that these coupled equations
have only three conserved cnes, and a conservation law is

generally expressed in the form

aT(d) axff)
=0
or dx ’ @9

where T, the conserved density, and -X, the flux of T, are
functionals of u and ¥. For Eq. @) we have the following

three conserved quantities Gere, the subscript £ denotes the

differential with respect to &

T(i) =y (308')
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provided ¥ is bounded and mean squre integrable.



3 Envelop Soliton Solution

In this section, we derive the nonlinear Schrodinger NS
equarticn on the basis of conventional reductive perturbation
method and study the propagation characrteristics. Again, the

variable transformation 1s introdueed by

Here ¢ is a parameter specifyving the smallness of amplitude

and we assume the following solution;

w= e" > ul({ mexplil(KE - AD)]. 33

n=l [= e

As the reality condition, we have

(a) _  (af*
=l

G
where the asterisk denotes the complex conjugarte. Moreover,

for the first order of u.#”;we assume
W= 35
u' =0 forl{i=1.

This means that a modulation of the plane wave with the fre-
quency A and the wave number K is now under consideration.

Substitution of Eq. 3% into Eq. QD vields the n—th order



equation
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From the first order equation with | ==] of Eq. (36), we obtain

[KA+3K" =6y =0, @7

which gives the frequency shift as

A=-1K’+6/K, 39

i
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because u;);o. The second order equation for !=tl is given
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in order for Eq. 89 to have a non—trivial soluticn. Thus,
1 corresponds to the group velocity. From the second order

equation for ! =£2, we have

w,®) 288 uf 1, O s
1 @) 12K 38w P

Using Egs. 3%, (0)and @1), we obtain from the third order

equation with !l =

o (1) azu_'( 0
(TS B =0, 42
7 an’
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which is the well—known nonliner Schrddinger equation. Solu-

tions of the nonlinear Schrodinger equation have been studi-

ed in detail [6]. In particular, if A and B take the same

sign, the solution which tends to zero for ilgpl==, is an

envelop soliton,

AV s 2,
1M (m,8) = a-sechlx(n] -V EKD["[TI (;—2;{ SR



where #* =®72A a’ and (45) represents the socliron moving with
the velocity V. If 'V approarches a constant agJat infinity,

we have the plane-wave solution,

0 (1,8) = uP expli{&n — (AK* — BU ). @6)

However, the plane wave is not stable bu:t subject to the
modulational instability. On the other hand, the plane wave
is stable if A and B take the opposite signs. It should be
noted that the coefficient A may change the sign due to the
influence of cutt—off frequency, &é—term. Namely, A is posi-
tive for KK =37 ““and A and B take the opposite sign. We
here restrict ocur discussions to the case with A-B>0. Noting
that the solution @5 has an ambiguocusness for choice of the

phase factor, we describe the solution in the form

w(1,8) = a-sec Alic(n — v ]expli(y + I, %)
with
g V V_ s 4]
=2 271 -2, “®

where the phase factor f must be choosen in order for the

boundary condition @2 to be satisfied, i. e., f=z-2. Substitu-

tion of @D with @8 into @3) gives the first order sclution as



u =2a-sechlx (- V{)]sin[y + @], ST
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4 Dissussions

We here discuss briefly a stationary traveling wave soly-

tion of Eq. @D. If we introduce

du/dt=-C Ju Bt GO

equation @1 reduces to the following coupled equations

el GD
dcs

2 g2 . G2

i _£512+£L13+Z-[££J —5\{"Ll+§'§('diJ =0 63

Furthermore, on introducing u=1—6T/C, we obtain the follow-

ing coupled equations

ZLP 5
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S
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which stand for the interaction process between sclitary

wave and a wave with wavelength./C/J .



in section 3, we derived the envelop soliton solution of

the extended K-dV eguation @1). But it is not staticnary.
It is not known nor readily seen whether the extended K—dV
equation prosseses the stationary solutions under the boun-
dary condition 25 . We might be able to study the character-

istics of the stationary solutions on the basis of the coupled

equation G4 and 62 .



5 Summary

[n this article, we studied the nonlinear magnetosonic
waves propagating perpendicularly to a magnetic field on the
basis of fluid equations including two—ion species. Magneto-
sonic waves in case of two—ion plasma are split into two
typical modes, namely, the high— and low— frequency modes.
It shloud be noted that the dispersion branch of high fre-
quency mode has a finite cut —off frequency. It turned out
that the high frequency magnetosonic wave under the influ-
ence of finite cut—off frequency can be described by an ex-
tended K-dV equation rather than the conventional K—dV equa-
tion. It seems that the extended K~dV equation has only
three conserved quantities though the conventional K—dV equa-
tion has infinite number of conserved ones.

Based on the reductive perturbation technique, we reduced
the extended K—dV equation into the nonlinear Schrddinger
type equation and discussed the propagation characteristics
of this mode. We showed that the critical wave number K. may
exist due to the finite cutt—off frequency effect. This fact
affects the situation whether the mode is modulationally

stable or not. Detailed discussions on stationary solutions

awaits futher investigations.
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